Merge pull request #1587 from vnpy/docs

Docs
This commit is contained in:
vn.py 2019-04-12 20:58:52 +08:00 committed by GitHub
commit ebbc4f2304
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 976 additions and 19 deletions

View File

@ -0,0 +1,63 @@
# CSV载入模块
CSV载入模块在vnpy根目录下vnpy\app\csv_loader文件夹内engine.py里面的CsvLoaderEngine类负责载入功能实现。
## 1. 初始化
初始化数据载入相关信息可以分成3类
- CSV文件路径
- 合约信息合约代码、交易所、K线周期
- CSV表头信息日期时间、开盘价、最高价、最低价、收盘价、成交量
```
self.file_path: str = ''
self.symbol: str = ""
self.exchange: Exchange = Exchange.SSE
self.interval: Interval = Interval.MINUTE
self.datetime_head: str = ''
self.open_head: str = ''
self.close_head: str = ''
self.low_head: str = ''
self.high_head: str = ''
self.volume_head: str = ''
```
 
## 2. 数据载入
从文件路径中读取CSV文件然后在每一次迭代中载入数据到数据库中。
```
with open(file_path, 'rt') as f:
reader = csv.DictReader(f)
for item in reader:
```
 
载入数据的方法可以分成2类
- 直接插入合约代码、交易所、K线周期、成交量、开盘价、最高价、最低价、收盘价、接口名称
- 需要处理日期时间根据其相应的时间格式通过strptime()转化成时间元祖、vt_symbol(合约代码.交易所格式如rb1905.SHFE)
注意db_bar.replace()用于数据更新,即把旧的数据替换成新的。
```
db_bar.symbol = symbol
db_bar.exchange = exchange.value
db_bar.datetime = datetime.strptime(
item[datetime_head], datetime_format
)
db_bar.interval = interval.value
db_bar.volume = item[volume_head]
db_bar.open_price = item[open_head]
db_bar.high_price = item[high_head]
db_bar.low_price = item[low_head]
db_bar.close_price = item[close_head]
db_bar.vt_symbol = vt_symbol
db_bar.gateway_name = "DB"
db_bar.replace()
```

View File

@ -1,23 +1,701 @@
# CTA策略模块
## 模块构成
## 1. 模块构成
CTA策略模块主要由7部分构成如下图
- base定义了CTA模块中用到的一些基础设置如引擎类型回测/实盘、回测模式K线/Tick、本地停止单的定义以及停止单状态等待中/已撤销/已触发)。
- template定义了CTA策略模板包含信号生成和委托管理、CTA信号仅负责信号生成、目标仓位算法仅负责委托管理适用于拆分巨型委托降低冲击成本
- strategies: 官方提供的cta策略示例包含从最基础的双均线策略到通道突破类型的布林带策略到跨时间周期策略再到把信号生成和委托管理独立开来的多信号策略。
- backesting包含回测引擎和参数优化。其中回测引擎定义了数据载入、委托撮合机制、计算与统计相关盈利指标、结果绘图等函数。
- converter定义了针对上期所品种平今/平昨模式的委托转换模块对于其他品种用户也可以通过可选参数lock切换至锁仓模式。
- engine定义了CTA策略实盘引擎其中包括RQData客户端初始化和数据载入、策略的初始化和启动、推送Tick订阅行情到策略中、挂撤单操作、策略的停止和移除等。
- ui基于PyQt5的GUI图形应用。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_strategy/seix_elementos.png "enter image title here")
 
## 2. 历史数据
## 历史数据
 
## 3. 策略开发
CTA策略模板提供完整的信号生成和委托管理功能用户可以基于该模板自行开发策略。新策略可以放在根目录下vnpy\app\cta_strategy\strategies文件夹内也可以放在用户运行的文件内VN Station模式。注意策略文件命名是以下划线模式如boll_channel_strategy.py而策略类命名采用的是驼峰式如BollChannelStrategy。
下面通过BollChannelStrategy策略示例来展示策略开发的具体步骤
### 3.1 参数设置
定义策略参数并且初始化策略变量。策略参数为策略类的公有属性,用户可以通过创建新的实例来调用或者改变策略参数。
如针对rb1905品种用户可以创建基于BollChannelStrategy的策略示例如RB_BollChannelStrategyboll_window可以由18改成30。
创建策略实例的方法有效地实现了一个策略跑多个品种,并且其策略参数可以通过品种的特征进行调整。
```
boll_window = 18
boll_dev = 3.4
cci_window = 10
atr_window = 30
sl_multiplier = 5.2
fixed_size = 1
boll_up = 0
boll_down = 0
cci_value = 0
atr_value = 0
intra_trade_high = 0
intra_trade_low = 0
long_stop = 0
short_stop = 0
```
### 3.2 类的初始化
初始化分3步
- 通过super( )的方法继承CTA策略模板在__init__( )函数传入CTA引擎、策略名称、vt_symbol、参数设置。
- 调用K线生成模块:通过时间切片来把Tick数据合成1分钟K线数据然后更大的时间周期数据如15分钟K线。
- 调用K线时间序列管理模块基于K线数据如1分钟、15分钟来生成相应的技术指标。
```
def __init__(self, cta_engine, strategy_name, vt_symbol, setting):
""""""
super(BollChannelStrategy, self).__init__(
cta_engine, strategy_name, vt_symbol, setting
)
self.bg = BarGenerator(self.on_bar, 15, self.on_15min_bar)
self.am = ArrayManager()
```
### 3.3 策略的初始化、启动、停止
通过“CTA策略”组件的相关功能按钮实现。
注意函数load_bar(10)代表策略初始化需要载入10个交易日的历史数据。该历史数据可以是Tick数据也可以是K线数据。
```
def on_init(self):
"""
Callback when strategy is inited.
"""
self.write_log("策略初始化")
self.load_bar(10)
def on_start(self):
"""
Callback when strategy is started.
"""
self.write_log("策略启动")
def on_stop(self):
"""
Callback when strategy is stopped.
"""
self.write_log("策略停止")
```
### 3.4 Tick数据回报
策略订阅某品种合约行情交易所会推送Tick数据到该策略上。
由于BollChannelStrategy是基于15分钟K线来生成交易信号的故收到Tick数据后需要用到K线生成模块里面的update_tick函数通过时间切片的方法聚合成1分钟K线数据并且推送到on_bar函数。
```
def on_tick(self, tick: TickData):
"""
Callback of new tick data update.
"""
self.bg.update_tick(tick)
```
### 3.5 K线数据回报
收到推送过来的1分钟K线数据后通过K线生成模块里面的update_bar函数以分钟切片的方法合成15分钟K线数据并且推送到on_15min_bar函数。
```
def on_bar(self, bar: BarData):
"""
Callback of new bar data update.
"""
self.bg.update_bar(bar)
```
### 3.6 15分钟K线数据回报
负责CTA信号的生成由3部分组成
- 清空未成交委托为了防止之前下的单子在上一个15分钟没有成交但是下一个15分钟可能已经调整了价格就用cancel_all()方法立刻撤销之前未成交的所有委托保证策略在当前这15分钟开始时的整个状态是清晰和唯一的。
- 调用K线时间序列管理模块基于最新的15分钟K线数据来计算相应计算指标如布林带通道上下轨、CCI指标、ATR指标
- 信号计算通过持仓的判断以及结合CCI指标、布林带通道、ATR指标在通道突破点挂出停止单委托buy/sell),同时设置离场点(short/cover)。
注意CTA策略具有低胜率和高盈亏比的特定在难以提升胜率的情况下研究提高策略盈亏比有利于策略盈利水平的上升。
```
def on_15min_bar(self, bar: BarData):
""""""
self.cancel_all()
am = self.am
am.update_bar(bar)
if not am.inited:
return
self.boll_up, self.boll_down = am.boll(self.boll_window, self.boll_dev)
self.cci_value = am.cci(self.cci_window)
self.atr_value = am.atr(self.atr_window)
if self.pos == 0:
self.intra_trade_high = bar.high_price
self.intra_trade_low = bar.low_price
if self.cci_value > 0:
self.buy(self.boll_up, self.fixed_size, True)
elif self.cci_value < 0:
self.short(self.boll_down, self.fixed_size, True)
elif self.pos > 0:
self.intra_trade_high = max(self.intra_trade_high, bar.high_price)
self.intra_trade_low = bar.low_price
self.long_stop = self.intra_trade_high - self.atr_value * self.sl_multiplier
self.sell(self.long_stop, abs(self.pos), True)
elif self.pos < 0:
self.intra_trade_high = bar.high_price
self.intra_trade_low = min(self.intra_trade_low, bar.low_price)
self.short_stop = self.intra_trade_low + self.atr_value * self.sl_multiplier
self.cover(self.short_stop, abs(self.pos), True)
self.put_event()
```
### 3.7 委托回报、成交回报、停止单回报
在策略中可以直接pass其具体逻辑应用交给回测/实盘引擎负责。
```
def on_order(self, order: OrderData):
"""
Callback of new order data update.
"""
pass
def on_trade(self, trade: TradeData):
"""
Callback of new trade data update.
"""
self.put_event()
def on_stop_order(self, stop_order: StopOrder):
"""
Callback of stop order update.
"""
pass
```
## 策略开发
&nbsp;
## 回测研究
## 4. 回测研究
backtesting.py定义了回测引擎下面主要介绍相关功能函数以及回测引擎应用示例
### 4.1 加载策略
把CTA策略逻辑对应合约品种以及参数设置可在策略文件外修改载入到回测引擎中。
```
def add_strategy(self, strategy_class: type, setting: dict):
""""""
self.strategy_class = strategy_class
self.strategy = strategy_class(
self, strategy_class.__name__, self.vt_symbol, setting
)
```
&nbsp;
### 4.2 载入历史数据
负责载入对应品种的历史数据大概有4个步骤
- 根据数据类型不同分成K线模式和Tick模式
- 通过select().where()方法有条件地从数据库中选取数据其筛选标准包括vt_symbol、 回测开始日期、回测结束日期、K线周期K线模式下
- order_by(DbBarData.datetime)表示需要按照时间顺序载入数据;
- 载入数据是以迭代方式进行的数据最终存入self.history_data。
```
def load_data(self):
""""""
self.output("开始加载历史数据")
if self.mode == BacktestingMode.BAR:
s = (
DbBarData.select()
.where(
(DbBarData.vt_symbol == self.vt_symbol)
& (DbBarData.interval == self.interval)
& (DbBarData.datetime >= self.start)
& (DbBarData.datetime <= self.end)
)
.order_by(DbBarData.datetime)
)
self.history_data = [db_bar.to_bar() for db_bar in s]
else:
s = (
DbTickData.select()
.where(
(DbTickData.vt_symbol == self.vt_symbol)
& (DbTickData.datetime >= self.start)
& (DbTickData.datetime <= self.end)
)
.order_by(DbTickData.datetime)
)
self.history_data = [db_tick.to_tick() for db_tick in s]
self.output(f"历史数据加载完成,数据量:{len(self.history_data)}")
```
&nbsp;
### 4.3 撮合成交
载入CTA策略以及相关历史数据后策略会根据最新的数据来计算相关指标。若符合条件会生成交易信号发出具体委托buy/sell/short/cover并且在下一根K线成交。
根据委托类型的不同回测引擎提供2种撮合成交机制来尽量模仿真实交易环节
- 限价单撮合成交:(以买入方向为例)先确定是否发生成交,成交标准为委托价>= 下一根K线的最低价然后确定成交价格成交价格为委托价与下一根K线开盘价的最小值。
- 停止单撮合成交:(以买入方向为例)先确定是否发生成交,成交标准为委托价<= 下一根K线的最高价然后确定成交价格成交价格为委托价与下一根K线开盘价的最大值。
&nbsp;
下面展示在引擎中限价单撮合成交的流程:
- 确定会撮合成交的价格;
- 遍历限价单字典中的所有限价单,推送委托进入未成交队列的更新状态;
- 判断成交状态,若出现成交,推送成交数据和委托数据;
- 从字典中删除已成交的限价单。
```
def cross_limit_order(self):
"""
Cross limit order with last bar/tick data.
"""
if self.mode == BacktestingMode.BAR:
long_cross_price = self.bar.low_price
short_cross_price = self.bar.high_price
long_best_price = self.bar.open_price
short_best_price = self.bar.open_price
else:
long_cross_price = self.tick.ask_price_1
short_cross_price = self.tick.bid_price_1
long_best_price = long_cross_price
short_best_price = short_cross_price
for order in list(self.active_limit_orders.values()):
# Push order update with status "not traded" (pending)
if order.status == Status.SUBMITTING:
order.status = Status.NOTTRADED
self.strategy.on_order(order)
# Check whether limit orders can be filled.
long_cross = (
order.direction == Direction.LONG
and order.price >= long_cross_price
and long_cross_price > 0
)
short_cross = (
order.direction == Direction.SHORT
and order.price <= short_cross_price
and short_cross_price > 0
)
if not long_cross and not short_cross:
continue
# Push order udpate with status "all traded" (filled).
order.traded = order.volume
order.status = Status.ALLTRADED
self.strategy.on_order(order)
self.active_limit_orders.pop(order.vt_orderid)
# Push trade update
self.trade_count += 1
if long_cross:
trade_price = min(order.price, long_best_price)
pos_change = order.volume
else:
trade_price = max(order.price, short_best_price)
pos_change = -order.volume
trade = TradeData(
symbol=order.symbol,
exchange=order.exchange,
orderid=order.orderid,
tradeid=str(self.trade_count),
direction=order.direction,
offset=order.offset,
price=trade_price,
volume=order.volume,
time=self.datetime.strftime("%H:%M:%S"),
gateway_name=self.gateway_name,
)
trade.datetime = self.datetime
self.strategy.pos += pos_change
self.strategy.on_trade(trade)
self.trades[trade.vt_tradeid] = trade
```
&nbsp;
### 4.4 计算策略盈亏情况
基于收盘价、当日持仓量、合约规模、滑点、手续费率等计算总盈亏与净盈亏并且其计算结果以DataFrame格式输出完成基于逐日盯市盈亏统计。
下面展示盈亏情况的计算过程
- 浮动盈亏 = 持仓量 \*(当日收盘价 - 昨日收盘价)\* 合约规模
- 实际盈亏 = 持仓变化量 \* (当时收盘价 - 开仓成交价)\* 合约规模
- 总盈亏 = 浮动盈亏 + 实际盈亏
- 净盈亏 = 总盈亏 - 总手续费 - 总滑点
```
def calculate_pnl(
self,
pre_close: float,
start_pos: float,
size: int,
rate: float,
slippage: float,
):
""""""
self.pre_close = pre_close
# Holding pnl is the pnl from holding position at day start
self.start_pos = start_pos
self.end_pos = start_pos
self.holding_pnl = self.start_pos * \
(self.close_price - self.pre_close) * size
# Trading pnl is the pnl from new trade during the day
self.trade_count = len(self.trades)
for trade in self.trades:
if trade.direction == Direction.LONG:
pos_change = trade.volume
else:
pos_change = -trade.volume
turnover = trade.price * trade.volume * size
self.trading_pnl += pos_change * \
(self.close_price - trade.price) * size
self.end_pos += pos_change
self.turnover += turnover
self.commission += turnover * rate
self.slippage += trade.volume * size * slippage
# Net pnl takes account of commission and slippage cost
self.total_pnl = self.trading_pnl + self.holding_pnl
self.net_pnl = self.total_pnl - self.commission - self.slippage
```
&nbsp;
## 参数优化
### 4.5 计算策略统计指标
calculate_statistics函数是基于逐日盯市盈亏情况DateFrame格式来计算衍生指标如最大回撤、年化收益、盈亏比、夏普比率等。
```
df["balance"] = df["net_pnl"].cumsum() + self.capital
df["return"] = np.log(df["balance"] / df["balance"].shift(1)).fillna(0)
df["highlevel"] = (
df["balance"].rolling(
min_periods=1, window=len(df), center=False).max()
)
df["drawdown"] = df["balance"] - df["highlevel"]
df["ddpercent"] = df["drawdown"] / df["highlevel"] * 100
# Calculate statistics value
start_date = df.index[0]
end_date = df.index[-1]
total_days = len(df)
profit_days = len(df[df["net_pnl"] > 0])
loss_days = len(df[df["net_pnl"] < 0])
end_balance = df["balance"].iloc[-1]
max_drawdown = df["drawdown"].min()
max_ddpercent = df["ddpercent"].min()
total_net_pnl = df["net_pnl"].sum()
daily_net_pnl = total_net_pnl / total_days
total_commission = df["commission"].sum()
daily_commission = total_commission / total_days
total_slippage = df["slippage"].sum()
daily_slippage = total_slippage / total_days
total_turnover = df["turnover"].sum()
daily_turnover = total_turnover / total_days
total_trade_count = df["trade_count"].sum()
daily_trade_count = total_trade_count / total_days
total_return = (end_balance / self.capital - 1) * 100
annual_return = total_return / total_days * 240
daily_return = df["return"].mean() * 100
return_std = df["return"].std() * 100
if return_std:
sharpe_ratio = daily_return / return_std * np.sqrt(240)
else:
sharpe_ratio = 0
```
&nbsp;
### 4.6 统计指标绘图
通过matplotlib绘制4幅图
- 资金曲线图
- 资金回撤图
- 每日盈亏图
- 每日盈亏分布图
```
def show_chart(self, df: DataFrame = None):
""""""
if not df:
df = self.daily_df
if df is None:
return
plt.figure(figsize=(10, 16))
balance_plot = plt.subplot(4, 1, 1)
balance_plot.set_title("Balance")
df["balance"].plot(legend=True)
drawdown_plot = plt.subplot(4, 1, 2)
drawdown_plot.set_title("Drawdown")
drawdown_plot.fill_between(range(len(df)), df["drawdown"].values)
pnl_plot = plt.subplot(4, 1, 3)
pnl_plot.set_title("Daily Pnl")
df["net_pnl"].plot(kind="bar", legend=False, grid=False, xticks=[])
distribution_plot = plt.subplot(4, 1, 4)
distribution_plot.set_title("Daily Pnl Distribution")
df["net_pnl"].hist(bins=50)
plt.show()
```
&nbsp;
### 4.7 回测引擎使用示例
- 导入回测引擎和CTA策略
- 设置回测相关参数品种、K线周期、回测开始和结束日期、手续费、滑点、合约规模、起始资金
- 载入策略和数据到引擎中,运行回测。
- 计算基于逐日统计盈利情况,计算统计指标,统计指标绘图。
```
from vnpy.app.cta_strategy.backtesting import BacktestingEngine
from vnpy.app.cta_strategy.strategies.boll_channel_strategy import (
BollChannelStrategy,
)
from datetime import datetime
## 实盘运行
engine = BacktestingEngine()
engine.set_parameters(
vt_symbol="IF88.CFFEX",
interval="1m",
start=datetime(2018, 1, 1),
end=datetime(2019, 1, 1),
rate=3.0/10000,
slippage=0.2,
size=300,
pricetick=0.2,
capital=1_000_000,
)
engine.add_strategy(AtrRsiStrategy, {})
engine.load_data()
engine.run_backtesting()
df = engine.calculate_result()
engine.calculate_statistics()
engine.show_chart()
```
&nbsp;
## 5. 参数优化
参数优化模块主要由3部分构成
### 5.1 参数设置
- 设置参数优化区间如boll_window设置起始值为18终止值为24步进为2这样就得到了[18, 20, 22, 24] 这4个待优化的参数了。
- 设置优化目标字段:如夏普比率、盈亏比、总收益率等。
- 随机生成参数对组合:使用迭代工具产生参数对组合,然后把参数对组合打包到一个个字典组成的列表中
```
class OptimizationSetting:
"""
Setting for runnning optimization.
"""
def __init__(self):
""""""
self.params = {}
self.target_name = ""
def add_parameter(
self, name: str, start: float, end: float = None, step: float = None
):
""""""
if not end and not step:
self.params[name] = [start]
return
if start >= end:
print("参数优化起始点必须小于终止点")
return
if step <= 0:
print("参数优化步进必须大于0")
return
value = start
value_list = []
while value <= end:
value_list.append(value)
value += step
self.params[name] = value_list
def set_target(self, target_name: str):
""""""
self.target_name = target_name
def generate_setting(self):
""""""
keys = self.params.keys()
values = self.params.values()
products = list(product(*values))
settings = []
for p in products:
setting = dict(zip(keys, p))
settings.append(setting)
return settings
```
&nbsp;
### 5.2 参数对组合回测
多进程优化时每个进程都会运行optimize函数输出参数对组合以及目标优化字段的结果。其步骤如下
- 调用回测引擎
- 输入回测相关设置
- 输入参数对组合到策略中
- 运行回测
- 返回回测结果,包括:参数对组合、目标优化字段数值、策略统计指标
```
def optimize(
target_name: str,
strategy_class: CtaTemplate,
setting: dict,
vt_symbol: str,
interval: Interval,
start: datetime,
rate: float,
slippage: float,
size: float,
pricetick: float,
capital: int,
end: datetime,
mode: BacktestingMode,
):
"""
Function for running in multiprocessing.pool
"""
engine = BacktestingEngine()
engine.set_parameters(
vt_symbol=vt_symbol,
interval=interval,
start=start,
rate=rate,
slippage=slippage,
size=size,
pricetick=pricetick,
capital=capital,
end=end,
mode=mode
)
engine.add_strategy(strategy_class, setting)
engine.load_data()
engine.run_backtesting()
engine.calculate_result()
statistics = engine.calculate_statistics()
target_value = statistics[target_name]
return (str(setting), target_value, statistics)
```
&nbsp;
### 5.3 多进程优化
- 根据CPU的核数来创建进程若CPU为4核则创建4个进程
- 在每个进程都调用apply_async( )的方法运行参数对组合回测其回测结果添加到results中 apply_async是异步非阻塞的即不用等待当前进程执行完毕随时根据系统调度来进行进程切换。
- pool.close()与pool.join()用于进程跑完任务后,去关闭进程。
- 对results的内容通过目标优化字段标准进行排序输出结果。
```
pool = multiprocessing.Pool(multiprocessing.cpu_count())
results = []
for setting in settings:
result = (pool.apply_async(optimize, (
target_name,
self.strategy_class,
setting,
self.vt_symbol,
self.interval,
self.start,
self.rate,
self.slippage,
self.size,
self.pricetick,
self.capital,
self.end,
self.mode
)))
results.append(result)
pool.close()
pool.join()
# Sort results and output
result_values = [result.get() for result in results]
result_values.sort(reverse=True, key=lambda result: result[1])
for value in result_values:
msg = f"参数:{value[0]}, 目标:{value[1]}"
self.output(msg)
return result_values
```
&nbsp;
## 6. 实盘运行

View File

@ -3,23 +3,129 @@
## Windows
### 使用VNConda
#### 1.下载VNConda Python 3.7 64位
下载地址如下:[VNConda-2.0.1-Windows-x86_64](https://conda.vnpy.com/VNConda-2.0.1-Windows-x86_64.exe)
&nbsp;
#### 2.安装VNConda
注意事项第4步会提示用户是否把VNConda注册成默认Python环境若用户存在其他Python环境则都不要勾选反之两个都勾选掉。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/install.bat/install_VNConda.png "enter image title here")
&nbsp;
#### 3.登陆VNStation
输入账号密码或者微信扫码登陆VNConda。社区账号通过微信扫码可得
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/install.bat/login_VNConda.png "enter image title here")
&nbsp;
#### 4.使用VNStation
登录后会进入到VN Station的主界面。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/install.bat/login_VNConda_2.png "enter image title here")
窗口下方有5个选项
- VN Trade Lite直接运行VN Trader (只有CTP接口)
- VN Trader Pro先选择保存相关临时文件的目录再运行VN Trader (接口任选)
- Jupyter Notebook先选择保存相关临时文件的目录再运行Jupyter Notebook
- 提问求助:提出相关问题,管理员会每天定时回复
- 后台更新一键更新VN Station
&nbsp;
&nbsp;
### 手动安装
#### 1.下载并安装最新版Anaconda3.7 64位
下载地址如下:[Anaconda Distribution](https://www.anaconda.com/distribution/)
(更轻量的Miniconda地址[MiniConda Distribution](https://docs.conda.io/en/latest/miniconda.html))
&nbsp;
#### 2.下载并解压vnpy
Windows用户选择zip压缩版本。下载地址如下[vnpy releases](https://github.com/vnpy/vnpy/releases)
&nbsp;
#### 3.安装vnpy
双击install.bat一键安装vnpy
- 先安装ta_lib库和ib api
- 然后安装requirements.txt文件内相关依赖库
- 最后复制vnpy到Anaconda内
&nbsp;
#### 4.启动VN Trader
在文件夹tests\trader中找到run.py文件。按住“Shift” + 鼠标右键进入cmd窗口输入下面命令即可启动VN Trader。
```
python run.py
```
&nbsp;
&nbsp;
## Ubuntu
### 安装脚本
### TA-Lib
### 中文编码
如果是英文系统(如阿里云),请先运行下列命令安装中文编码:
### 1. 下载并安装最新版本的Anaconda或者Miniconda Python 3.7 64位
以MiniConda为例进入已下载好 Miniconda3-latest-Linux-x86_64.sh 所在目录,终端运行如下命令开始安装。
```
sudo locale-gen zh_CN.GB18030
$ bash Miniconda3-latest-Linux-x86_64.sh
```
安装过程中可以一直按“Enter”键继续下去除了以下这点
当询问是否把Miniconda设置为Python 默认环境时,把默认的"no"改成“yes”。原因是Ubuntu 18.04已有自带的Python 3.6与Python 2.7。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/install.bat/install_Miniconda_ubuntu.png "enter image title here")
重启Ubuntu后打开终端直接输入"python" 然后按“Enter”键: 若出现如下图则表示成功把Miniconda设置为Python默认环境。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/install.bat/Conda_Python_version.png "enter image title here")
&nbsp;
### 2. 下载并解压vnpy
Linux用户选择tar.gz压缩版本。下载地址如下[vnpy releases](https://github.com/vnpy/vnpy/releases)
&nbsp;
### 3. 安装vnpy
先安装gcc编译器用于编译C++类接口文件。在终端中输入以下命令即可。
```
sudo apt-get install build-essential
```
然后在vnpy根目录打开终端输入下面命令一键安装vnpy。
```
bash install.sh
```
安装过程分为4步
- 下载并安装ta_lib库和numpy
- 安装requirements.txt文件内相关依赖库
- 安装中文编码(针对英文系统)
- 复制vnpy到Anaconda内若是在虚拟机上运行需要把内存调至4g否则报错
&nbsp;
### 4.启动VN Trader
在文件夹tests\trader中找到run.py文件。右键进入终端输入下面命令即可启动VN Trader。
```
python run.py
```

View File

@ -1,20 +1,130 @@
# 基本使用
## 启动VN Trader
## 1.启动VN Trader
### 1.1 VN Station模式
登陆VN Station后点击VN Trade Lite快速进入VN Trader只有CTP接口或者点击VN Trader Pro先选择如下图的底层接口和上层应用再进入VN Trader。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/quick_start/VnTrader_Pro.png "enter image title here")
## 连接接口
### 1.2 脚本模式
在文件夹tests\trader中找到run.py文件。按住“Shift” + 鼠标右键进入cmd窗口输入下面命令进入如图VN Trader
```
python run.py
```
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/quick_start/Vntrader.PNG "enter image title here")
&nbsp;
## 2.连接接口
以SinNow仿真交易账号登陆CTP接口为例点击菜单栏的“系统”->“连接CTP”后弹出如上图所示CTP接口的配置对话框输入以下内容后即可登录
- 用户名username111111 6位纯数字账号
- 密码password1111111 (需要修改一次密码用于盘后测试)
- 经纪商编号brokerid9999 SimNow默认经纪商编号
- 交易服务器地址td_address180.168.146.187:10030 (盘后测试)
- 行情服务器地址md_address180.168.146.187:10031 (盘后测试)
- auth_code和product_info主要用于19年中的CTP接入验证目前留空即可
注意若使用期货实盘账户需要问清楚其brokerid、auth_code和product_info; 并且仿真交易需要另外申请开通。
连接成功以后,日志组件会立刻输出陆成功相关信息,同时用户也可以看到账号信息,持仓信息,合约查询等相关信息。
&nbsp;
## 3.订阅行情
在交易组件输入交易所和合约代码并且按“Enter”键即可订阅器行情。如订阅IF股指期货交易所CFFEX名称IF905铁矿石期货交易所DCE名称i1905。
此时行情组件会显示最新行情信息;交易组件会显示合约名称,并且在下方显示深度行情报价:如最新价、买一价、卖一价。(数字货币品种可以显示十档行情)
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/quick_start/subcribe_contract.png "enter image title here")
## 订阅行情
&nbsp;
## 4.委托交易
交易组件适用于手动交易。除了在行情订阅中输入的交易所和合约代码以外还需要填写以下5个字段委托方向、开平仓类型、委托类型、委托价格和委托数量。若委托类型为市价单委托价格可不填。
发出委托同时本地缓存委托相关信息,并且显示到委托组件和活动组件,其委托状态为“提交中”,然后等待委托回报。
交易所收到用户发送的委托,将其插入中央订单簿来进行撮合成交,并推送委托回报给用户:
- 若委托还未成交,委托组件和活动组件只会更新时间和委托状态这两字段,委托状态变成“未成交”;
- 若委托立刻成交,委托相关信息会从活动组件移除,新增至成交组件,委托状态变成“全部成交”。
## 委托交易
## 数据监控
&nbsp;
## 5.数据监控
数据监控由以下组件构成并且附带2个辅助功能选定以下任一组件鼠标右键可以选择“调整列宽”特别适用于屏幕分辨率较低或者选择“保存数据”csv格式
### 5.1行情组件
用于对订阅的行情进行实时监控如下图监控内容可以分成3类
- 合约信息:合约代码、交易所、合约名称
- 行情信息:最新价、成交量、开盘价、最高价、最低价、收盘价、买一价、买一量、卖一价、卖一量
- 其他信息:数据推送时间、接口
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/quick_start/subcribe_contract_module.png "enter image title here")
## 应用模块
### 5.2活动组件
活动组件用于存放还未成交的委托,如限价单或者没有立刻成交的市价单,委托状态永远是“提交中”。在该组件中鼠标双击任一委托可以完成撤单操作。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/quick_start/active_order.png "enter image title here")
### 5.3成交组件
成交组件用于存放已成交的委托需要注意3个字段信息价格、数量、时间。他们都是交易所推送过来的成交信息而不是委托信息。
注意有些接口会独立推送成交信息如CTP接口有些接口则需要从委托信息里面提取成交相关字段如Tiger接口。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/quick_start/trade.png "enter image title here")
### 5.4委托组件
委托组件用于存放用户发出的所有委托信息,其委托状态可以是提交中、已撤销、部分成交、全部成交、拒单等等。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/quick_start/order.png "enter image title here")
### 5.5持仓组件
持仓组件用于记录其历史持仓。其中需要了解以下字段含义
- 方向:期货品种具有多空方向;而股票品种方向为“净”持仓。
- 昨仓:其出现衍生于上期所特有的平今、平昨模式的需要
- 数量:总持仓,即今仓 + 昨仓
- 均价:历史成交的平均价格(某些巨型委托,会发生多次部分成交,需要计算平均价格)
- 盈亏:持仓盈亏:多仓情况下,盈利 = 当前价格 - 均价;空仓则反之。
若平仓离场持仓数量清零浮动盈亏变成实际盈亏从而影响账号余额变化。故以下字段数量、昨仓、冻结、均价、盈亏均为“0”如下图。
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/quick_start/query_position.png "enter image title here")
### 5.6资金组件
资金组件显示了账号的基础信息如下图需要注意3个字段信息
- 可用资金:可以用于委托的现金
- 冻结:委托操作冻结的金额(与保证金不是一个概念)
- 余额:总资金,即可用资金 + 保证金 + 浮动盈亏
注意:若全部平仓,浮动盈亏变成实际盈亏,保证金和浮动盈亏清零,总资金等于可用资金
![enter image description here](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/quick_start/query_account.png "enter image title here")
### 5.7日志组件
&nbsp;
## 6.应用模块