294 lines
11 KiB
Python
294 lines
11 KiB
Python
# encoding: UTF-8
|
||
|
||
"""
|
||
一个ATR-RSI指标结合的交易策略,适合用在股指的1分钟和5分钟线上。
|
||
|
||
注意事项:
|
||
1. 作者不对交易盈利做任何保证,策略代码仅供参考
|
||
2. 本策略需要用到talib,没有安装的用户请先参考www.vnpy.org上的教程安装
|
||
3. 将IF0000_1min.csv用ctaHistoryData.py导入MongoDB后,直接运行本文件即可回测策略
|
||
|
||
"""
|
||
|
||
import os
|
||
import sys
|
||
|
||
import talib
|
||
import numpy as np
|
||
|
||
from trader.app.ctaStrategy.ctaBase import *
|
||
from trader.app.ctaStrategy.ctaTemplate import CtaTemplate
|
||
|
||
|
||
########################################################################
|
||
class AtrRsiStrategy(CtaTemplate):
|
||
"""结合ATR和RSI指标的一个分钟线交易策略"""
|
||
className = 'AtrRsiStrategy'
|
||
author = u'用Python的交易员'
|
||
|
||
# 策略参数
|
||
atrLength = 22 # 计算ATR指标的窗口数
|
||
atrMaLength = 10 # 计算ATR均线的窗口数
|
||
rsiLength = 5 # 计算RSI的窗口数
|
||
rsiEntry = 16 # RSI的开仓信号
|
||
trailingPercent = 0.8 # 百分比移动止损
|
||
initDays = 10 # 初始化数据所用的天数
|
||
fixedSize = 1 # 每次交易的数量
|
||
|
||
# 策略变量
|
||
bar = None # K线对象
|
||
barMinute = EMPTY_STRING # K线当前的分钟
|
||
|
||
bufferSize = 100 # 需要缓存的数据的大小
|
||
bufferCount = 0 # 目前已经缓存了的数据的计数
|
||
highArray = np.zeros(bufferSize) # K线最高价的数组
|
||
lowArray = np.zeros(bufferSize) # K线最低价的数组
|
||
closeArray = np.zeros(bufferSize) # K线收盘价的数组
|
||
|
||
atrCount = 0 # 目前已经缓存了的ATR的计数
|
||
atrArray = np.zeros(bufferSize) # ATR指标的数组
|
||
atrValue = 0 # 最新的ATR指标数值
|
||
atrMa = 0 # ATR移动平均的数值
|
||
|
||
rsiValue = 0 # RSI指标的数值
|
||
rsiBuy = 0 # RSI买开阈值
|
||
rsiSell = 0 # RSI卖开阈值
|
||
intraTradeHigh = 0 # 移动止损用的持仓期内最高价
|
||
intraTradeLow = 0 # 移动止损用的持仓期内最低价
|
||
|
||
orderList = [] # 保存委托代码的列表
|
||
|
||
# 参数列表,保存了参数的名称
|
||
paramList = ['name',
|
||
'className',
|
||
'author',
|
||
'vtSymbol',
|
||
'atrLength',
|
||
'atrMaLength',
|
||
'rsiLength',
|
||
'rsiEntry',
|
||
'trailingPercent']
|
||
|
||
# 变量列表,保存了变量的名称
|
||
varList = ['inited',
|
||
'trading',
|
||
'pos',
|
||
'atrValue',
|
||
'atrMa',
|
||
'rsiValue',
|
||
'rsiBuy',
|
||
'rsiSell']
|
||
|
||
#----------------------------------------------------------------------
|
||
def __init__(self, ctaEngine, setting):
|
||
"""Constructor"""
|
||
super(AtrRsiStrategy, self).__init__(ctaEngine, setting)
|
||
|
||
# 注意策略类中的可变对象属性(通常是list和dict等),在策略初始化时需要重新创建,
|
||
# 否则会出现多个策略实例之间数据共享的情况,有可能导致潜在的策略逻辑错误风险,
|
||
# 策略类中的这些可变对象属性可以选择不写,全都放在__init__下面,写主要是为了阅读
|
||
# 策略时方便(更多是个编程习惯的选择)
|
||
|
||
#----------------------------------------------------------------------
|
||
def onInit(self):
|
||
"""初始化策略(必须由用户继承实现)"""
|
||
self.writeCtaLog(u'%s策略初始化' %self.name)
|
||
|
||
# 初始化RSI入场阈值
|
||
self.rsiBuy = 50 + self.rsiEntry
|
||
self.rsiSell = 50 - self.rsiEntry
|
||
|
||
# 载入历史数据,并采用回放计算的方式初始化策略数值
|
||
initData = self.loadBar(self.initDays)
|
||
for bar in initData:
|
||
self.onBar(bar)
|
||
|
||
self.putEvent()
|
||
|
||
#----------------------------------------------------------------------
|
||
def onStart(self):
|
||
"""启动策略(必须由用户继承实现)"""
|
||
self.writeCtaLog(u'%s策略启动' %self.name)
|
||
self.putEvent()
|
||
|
||
#----------------------------------------------------------------------
|
||
def onStop(self):
|
||
"""停止策略(必须由用户继承实现)"""
|
||
self.writeCtaLog(u'%s策略停止' %self.name)
|
||
self.putEvent()
|
||
|
||
#----------------------------------------------------------------------
|
||
def onTick(self, tick):
|
||
"""收到行情TICK推送(必须由用户继承实现)"""
|
||
# 计算K线
|
||
tickMinute = tick.datetime.minute
|
||
|
||
if tickMinute != self.barMinute:
|
||
if self.bar:
|
||
self.onBar(self.bar)
|
||
|
||
bar = CtaBarData()
|
||
bar.vtSymbol = tick.vtSymbol
|
||
bar.symbol = tick.symbol
|
||
bar.exchange = tick.exchange
|
||
|
||
bar.open = tick.lastPrice
|
||
bar.high = tick.lastPrice
|
||
bar.low = tick.lastPrice
|
||
bar.close = tick.lastPrice
|
||
|
||
bar.date = tick.date
|
||
bar.time = tick.time
|
||
bar.datetime = tick.datetime # K线的时间设为第一个Tick的时间
|
||
|
||
self.bar = bar # 这种写法为了减少一层访问,加快速度
|
||
self.barMinute = tickMinute # 更新当前的分钟
|
||
else: # 否则继续累加新的K线
|
||
bar = self.bar # 写法同样为了加快速度
|
||
|
||
bar.high = max(bar.high, tick.lastPrice)
|
||
bar.low = min(bar.low, tick.lastPrice)
|
||
bar.close = tick.lastPrice
|
||
|
||
#----------------------------------------------------------------------
|
||
def onBar(self, bar):
|
||
"""收到Bar推送(必须由用户继承实现)"""
|
||
# 撤销之前发出的尚未成交的委托(包括限价单和停止单)
|
||
for orderID in self.orderList:
|
||
self.cancelOrder(orderID)
|
||
self.orderList = []
|
||
|
||
# 保存K线数据
|
||
self.closeArray[0:self.bufferSize-1] = self.closeArray[1:self.bufferSize]
|
||
self.highArray[0:self.bufferSize-1] = self.highArray[1:self.bufferSize]
|
||
self.lowArray[0:self.bufferSize-1] = self.lowArray[1:self.bufferSize]
|
||
|
||
self.closeArray[-1] = bar.close
|
||
self.highArray[-1] = bar.high
|
||
self.lowArray[-1] = bar.low
|
||
|
||
self.bufferCount += 1
|
||
if self.bufferCount < self.bufferSize:
|
||
return
|
||
|
||
# 计算指标数值
|
||
self.atrValue = talib.ATR(self.highArray,
|
||
self.lowArray,
|
||
self.closeArray,
|
||
self.atrLength)[-1]
|
||
self.atrArray[0:self.bufferSize-1] = self.atrArray[1:self.bufferSize]
|
||
self.atrArray[-1] = self.atrValue
|
||
|
||
self.atrCount += 1
|
||
if self.atrCount < self.bufferSize:
|
||
return
|
||
|
||
self.atrMa = talib.MA(self.atrArray,
|
||
self.atrMaLength)[-1]
|
||
self.rsiValue = talib.RSI(self.closeArray,
|
||
self.rsiLength)[-1]
|
||
|
||
# 判断是否要进行交易
|
||
|
||
# 当前无仓位
|
||
if self.pos == 0:
|
||
self.intraTradeHigh = bar.high
|
||
self.intraTradeLow = bar.low
|
||
|
||
# ATR数值上穿其移动平均线,说明行情短期内波动加大
|
||
# 即处于趋势的概率较大,适合CTA开仓
|
||
if self.atrValue > self.atrMa:
|
||
# 使用RSI指标的趋势行情时,会在超买超卖区钝化特征,作为开仓信号
|
||
if self.rsiValue > self.rsiBuy:
|
||
# 这里为了保证成交,选择超价5个整指数点下单
|
||
self.buy(bar.close+5, self.fixedSize)
|
||
|
||
elif self.rsiValue < self.rsiSell:
|
||
self.short(bar.close-5, self.fixedSize)
|
||
|
||
# 持有多头仓位
|
||
elif self.pos > 0:
|
||
# 计算多头持有期内的最高价,以及重置最低价
|
||
self.intraTradeHigh = max(self.intraTradeHigh, bar.high)
|
||
self.intraTradeLow = bar.low
|
||
# 计算多头移动止损
|
||
longStop = self.intraTradeHigh * (1-self.trailingPercent/100)
|
||
# 发出本地止损委托,并且把委托号记录下来,用于后续撤单
|
||
orderID = self.sell(longStop, abs(self.pos), stop=True)
|
||
self.orderList.append(orderID)
|
||
|
||
# 持有空头仓位
|
||
elif self.pos < 0:
|
||
self.intraTradeLow = min(self.intraTradeLow, bar.low)
|
||
self.intraTradeHigh = bar.high
|
||
|
||
shortStop = self.intraTradeLow * (1+self.trailingPercent/100)
|
||
orderID = self.cover(shortStop, abs(self.pos), stop=True)
|
||
self.orderList.append(orderID)
|
||
|
||
# 发出状态更新事件
|
||
self.putEvent()
|
||
|
||
#----------------------------------------------------------------------
|
||
def onOrder(self, order):
|
||
"""收到委托变化推送(必须由用户继承实现)"""
|
||
pass
|
||
|
||
#----------------------------------------------------------------------
|
||
def onTrade(self, trade):
|
||
# 发出状态更新事件
|
||
self.putEvent()
|
||
|
||
if __name__ == '__main__':
|
||
# 提供直接双击回测的功能
|
||
# 导入PyQt4的包是为了保证matplotlib使用PyQt4而不是PySide,防止初始化出错
|
||
from ctaBacktesting import *
|
||
from PyQt4 import QtCore, QtGui
|
||
|
||
# 创建回测引擎
|
||
engine = BacktestingEngine()
|
||
|
||
# 设置引擎的回测模式为K线
|
||
engine.setBacktestingMode(engine.BAR_MODE)
|
||
|
||
# 设置回测用的数据起始日期
|
||
engine.setStartDate('20120101')
|
||
|
||
# 设置产品相关参数
|
||
engine.setSlippage(0.2) # 股指1跳
|
||
engine.setRate(0.3/10000) # 万0.3
|
||
engine.setSize(300) # 股指合约大小
|
||
engine.setPriceTick(0.2) # 股指最小价格变动
|
||
|
||
# 设置使用的历史数据库
|
||
engine.setDatabase(MINUTE_DB_NAME, 'IF0000')
|
||
|
||
# 在引擎中创建策略对象
|
||
d = {'atrLength': 11}
|
||
engine.initStrategy(AtrRsiStrategy, d)
|
||
|
||
# 开始跑回测
|
||
engine.runBacktesting()
|
||
|
||
# 显示回测结果
|
||
engine.showBacktestingResult()
|
||
|
||
## 跑优化
|
||
#setting = OptimizationSetting() # 新建一个优化任务设置对象
|
||
#setting.setOptimizeTarget('capital') # 设置优化排序的目标是策略净盈利
|
||
#setting.addParameter('atrLength', 12, 20, 2) # 增加第一个优化参数atrLength,起始11,结束12,步进1
|
||
#setting.addParameter('atrMa', 20, 30, 5) # 增加第二个优化参数atrMa,起始20,结束30,步进1
|
||
#setting.addParameter('rsiLength', 5) # 增加一个固定数值的参数
|
||
|
||
## 性能测试环境:I7-3770,主频3.4G, 8核心,内存16G,Windows 7 专业版
|
||
## 测试时还跑着一堆其他的程序,性能仅供参考
|
||
#import time
|
||
#start = time.time()
|
||
|
||
## 运行单进程优化函数,自动输出结果,耗时:359秒
|
||
#engine.runOptimization(AtrRsiStrategy, setting)
|
||
|
||
## 多进程优化,耗时:89秒
|
||
##engine.runParallelOptimization(AtrRsiStrategy, setting)
|
||
|
||
#print u'耗时:%s' %(time.time()-start) |