986 lines
39 KiB
Python
986 lines
39 KiB
Python
# encoding: UTF-8
|
||
|
||
'''
|
||
本文件中包含的是CTA模块的回测引擎,回测引擎的API和CTA引擎一致,
|
||
可以使用和实盘相同的代码进行回测。
|
||
'''
|
||
from __future__ import division
|
||
|
||
from datetime import datetime, timedelta
|
||
from collections import OrderedDict
|
||
from itertools import product
|
||
import multiprocessing
|
||
import pymongo
|
||
|
||
from ctaBase import *
|
||
from vtConstant import *
|
||
from vtGateway import VtOrderData, VtTradeData
|
||
from vtFunction import loadMongoSetting
|
||
|
||
|
||
########################################################################
|
||
class BacktestingEngine(object):
|
||
"""
|
||
CTA回测引擎
|
||
函数接口和策略引擎保持一样,
|
||
从而实现同一套代码从回测到实盘。
|
||
"""
|
||
|
||
TICK_MODE = 'tick'
|
||
BAR_MODE = 'bar'
|
||
|
||
#----------------------------------------------------------------------
|
||
def __init__(self):
|
||
"""Constructor"""
|
||
# 本地停止单编号计数
|
||
self.stopOrderCount = 0
|
||
# stopOrderID = STOPORDERPREFIX + str(stopOrderCount)
|
||
|
||
# 本地停止单字典
|
||
# key为stopOrderID,value为stopOrder对象
|
||
self.stopOrderDict = {} # 停止单撤销后不会从本字典中删除
|
||
self.workingStopOrderDict = {} # 停止单撤销后会从本字典中删除
|
||
|
||
# 引擎类型为回测
|
||
self.engineType = ENGINETYPE_BACKTESTING
|
||
|
||
# 回测相关
|
||
self.strategy = None # 回测策略
|
||
self.mode = self.BAR_MODE # 回测模式,默认为K线
|
||
|
||
self.startDate = ''
|
||
self.initDays = 0
|
||
self.endDate = ''
|
||
|
||
self.slippage = 0 # 回测时假设的滑点
|
||
self.rate = 0 # 回测时假设的佣金比例(适用于百分比佣金)
|
||
self.size = 1 # 合约大小,默认为1
|
||
self.priceTick = 0 # 价格最小变动
|
||
|
||
self.dbClient = None # 数据库客户端
|
||
self.dbCursor = None # 数据库指针
|
||
|
||
#self.historyData = [] # 历史数据的列表,回测用
|
||
self.initData = [] # 初始化用的数据
|
||
#self.backtestingData = [] # 回测用的数据
|
||
|
||
self.dbName = '' # 回测数据库名
|
||
self.symbol = '' # 回测集合名
|
||
|
||
self.dataStartDate = None # 回测数据开始日期,datetime对象
|
||
self.dataEndDate = None # 回测数据结束日期,datetime对象
|
||
self.strategyStartDate = None # 策略启动日期(即前面的数据用于初始化),datetime对象
|
||
|
||
self.limitOrderDict = OrderedDict() # 限价单字典
|
||
self.workingLimitOrderDict = OrderedDict() # 活动限价单字典,用于进行撮合用
|
||
self.limitOrderCount = 0 # 限价单编号
|
||
|
||
self.tradeCount = 0 # 成交编号
|
||
self.tradeDict = OrderedDict() # 成交字典
|
||
|
||
self.logList = [] # 日志记录
|
||
|
||
# 当前最新数据,用于模拟成交用
|
||
self.tick = None
|
||
self.bar = None
|
||
self.dt = None # 最新的时间
|
||
|
||
#----------------------------------------------------------------------
|
||
def setStartDate(self, startDate='20100416', initDays=10):
|
||
"""设置回测的启动日期"""
|
||
self.startDate = startDate
|
||
self.initDays = initDays
|
||
|
||
self.dataStartDate = datetime.strptime(startDate, '%Y%m%d')
|
||
|
||
initTimeDelta = timedelta(initDays)
|
||
self.strategyStartDate = self.dataStartDate + initTimeDelta
|
||
|
||
#----------------------------------------------------------------------
|
||
def setEndDate(self, endDate=''):
|
||
"""设置回测的结束日期"""
|
||
self.endDate = endDate
|
||
if endDate:
|
||
self.dataEndDate= datetime.strptime(endDate, '%Y%m%d')
|
||
# 若不修改时间则会导致不包含dataEndDate当天数据
|
||
self.dataEndDate = self.dataEndDate.replace(hour=23, minute=59)
|
||
|
||
#----------------------------------------------------------------------
|
||
def setBacktestingMode(self, mode):
|
||
"""设置回测模式"""
|
||
self.mode = mode
|
||
|
||
#----------------------------------------------------------------------
|
||
def setDatabase(self, dbName, symbol):
|
||
"""设置历史数据所用的数据库"""
|
||
self.dbName = dbName
|
||
self.symbol = symbol
|
||
|
||
#----------------------------------------------------------------------
|
||
def loadHistoryData(self):
|
||
"""载入历史数据"""
|
||
host, port, logging = loadMongoSetting()
|
||
|
||
self.dbClient = pymongo.MongoClient(host, port)
|
||
collection = self.dbClient[self.dbName][self.symbol]
|
||
|
||
self.output(u'开始载入数据')
|
||
|
||
# 首先根据回测模式,确认要使用的数据类
|
||
if self.mode == self.BAR_MODE:
|
||
dataClass = CtaBarData
|
||
func = self.newBar
|
||
else:
|
||
dataClass = CtaTickData
|
||
func = self.newTick
|
||
|
||
# 载入初始化需要用的数据
|
||
flt = {'datetime':{'$gte':self.dataStartDate,
|
||
'$lt':self.strategyStartDate}}
|
||
initCursor = collection.find(flt)
|
||
|
||
# 将数据从查询指针中读取出,并生成列表
|
||
self.initData = [] # 清空initData列表
|
||
for d in initCursor:
|
||
data = dataClass()
|
||
data.__dict__ = d
|
||
self.initData.append(data)
|
||
|
||
# 载入回测数据
|
||
if not self.dataEndDate:
|
||
flt = {'datetime':{'$gte':self.strategyStartDate}} # 数据过滤条件
|
||
else:
|
||
flt = {'datetime':{'$gte':self.strategyStartDate,
|
||
'$lte':self.dataEndDate}}
|
||
self.dbCursor = collection.find(flt)
|
||
|
||
self.output(u'载入完成,数据量:%s' %(initCursor.count() + self.dbCursor.count()))
|
||
|
||
#----------------------------------------------------------------------
|
||
def runBacktesting(self):
|
||
"""运行回测"""
|
||
# 载入历史数据
|
||
self.loadHistoryData()
|
||
|
||
# 首先根据回测模式,确认要使用的数据类
|
||
if self.mode == self.BAR_MODE:
|
||
dataClass = CtaBarData
|
||
func = self.newBar
|
||
else:
|
||
dataClass = CtaTickData
|
||
func = self.newTick
|
||
|
||
self.output(u'开始回测')
|
||
|
||
self.strategy.inited = True
|
||
self.strategy.onInit()
|
||
self.output(u'策略初始化完成')
|
||
|
||
self.strategy.trading = True
|
||
self.strategy.onStart()
|
||
self.output(u'策略启动完成')
|
||
|
||
self.output(u'开始回放数据')
|
||
|
||
for d in self.dbCursor:
|
||
data = dataClass()
|
||
data.__dict__ = d
|
||
func(data)
|
||
|
||
self.output(u'数据回放结束')
|
||
|
||
#----------------------------------------------------------------------
|
||
def newBar(self, bar):
|
||
"""新的K线"""
|
||
self.bar = bar
|
||
self.dt = bar.datetime
|
||
self.crossLimitOrder() # 先撮合限价单
|
||
self.crossStopOrder() # 再撮合停止单
|
||
self.strategy.onBar(bar) # 推送K线到策略中
|
||
|
||
#----------------------------------------------------------------------
|
||
def newTick(self, tick):
|
||
"""新的Tick"""
|
||
self.tick = tick
|
||
self.dt = tick.datetime
|
||
self.crossLimitOrder()
|
||
self.crossStopOrder()
|
||
self.strategy.onTick(tick)
|
||
|
||
#----------------------------------------------------------------------
|
||
def initStrategy(self, strategyClass, setting=None):
|
||
"""
|
||
初始化策略
|
||
setting是策略的参数设置,如果使用类中写好的默认设置则可以不传该参数
|
||
"""
|
||
self.strategy = strategyClass(self, setting)
|
||
self.strategy.name = self.strategy.className
|
||
|
||
#----------------------------------------------------------------------
|
||
def sendOrder(self, vtSymbol, orderType, price, volume, strategy):
|
||
"""发单"""
|
||
self.limitOrderCount += 1
|
||
orderID = str(self.limitOrderCount)
|
||
|
||
order = VtOrderData()
|
||
order.vtSymbol = vtSymbol
|
||
order.price = self.roundToPriceTick(price)
|
||
order.totalVolume = volume
|
||
order.status = STATUS_NOTTRADED # 刚提交尚未成交
|
||
order.orderID = orderID
|
||
order.vtOrderID = orderID
|
||
order.orderTime = str(self.dt)
|
||
|
||
# CTA委托类型映射
|
||
if orderType == CTAORDER_BUY:
|
||
order.direction = DIRECTION_LONG
|
||
order.offset = OFFSET_OPEN
|
||
elif orderType == CTAORDER_SELL:
|
||
order.direction = DIRECTION_SHORT
|
||
order.offset = OFFSET_CLOSE
|
||
elif orderType == CTAORDER_SHORT:
|
||
order.direction = DIRECTION_SHORT
|
||
order.offset = OFFSET_OPEN
|
||
elif orderType == CTAORDER_COVER:
|
||
order.direction = DIRECTION_LONG
|
||
order.offset = OFFSET_CLOSE
|
||
|
||
# 保存到限价单字典中
|
||
self.workingLimitOrderDict[orderID] = order
|
||
self.limitOrderDict[orderID] = order
|
||
|
||
return orderID
|
||
|
||
#----------------------------------------------------------------------
|
||
def cancelOrder(self, vtOrderID):
|
||
"""撤单"""
|
||
if vtOrderID in self.workingLimitOrderDict:
|
||
order = self.workingLimitOrderDict[vtOrderID]
|
||
order.status = STATUS_CANCELLED
|
||
order.cancelTime = str(self.dt)
|
||
del self.workingLimitOrderDict[vtOrderID]
|
||
|
||
#----------------------------------------------------------------------
|
||
def sendStopOrder(self, vtSymbol, orderType, price, volume, strategy):
|
||
"""发停止单(本地实现)"""
|
||
self.stopOrderCount += 1
|
||
stopOrderID = STOPORDERPREFIX + str(self.stopOrderCount)
|
||
|
||
so = StopOrder()
|
||
so.vtSymbol = vtSymbol
|
||
so.price = self.roundToPriceTick(price)
|
||
so.volume = volume
|
||
so.strategy = strategy
|
||
so.stopOrderID = stopOrderID
|
||
so.status = STOPORDER_WAITING
|
||
|
||
if orderType == CTAORDER_BUY:
|
||
so.direction = DIRECTION_LONG
|
||
so.offset = OFFSET_OPEN
|
||
elif orderType == CTAORDER_SELL:
|
||
so.direction = DIRECTION_SHORT
|
||
so.offset = OFFSET_CLOSE
|
||
elif orderType == CTAORDER_SHORT:
|
||
so.direction = DIRECTION_SHORT
|
||
so.offset = OFFSET_OPEN
|
||
elif orderType == CTAORDER_COVER:
|
||
so.direction = DIRECTION_LONG
|
||
so.offset = OFFSET_CLOSE
|
||
|
||
# 保存stopOrder对象到字典中
|
||
self.stopOrderDict[stopOrderID] = so
|
||
self.workingStopOrderDict[stopOrderID] = so
|
||
|
||
return stopOrderID
|
||
|
||
#----------------------------------------------------------------------
|
||
def cancelStopOrder(self, stopOrderID):
|
||
"""撤销停止单"""
|
||
# 检查停止单是否存在
|
||
if stopOrderID in self.workingStopOrderDict:
|
||
so = self.workingStopOrderDict[stopOrderID]
|
||
so.status = STOPORDER_CANCELLED
|
||
del self.workingStopOrderDict[stopOrderID]
|
||
|
||
#----------------------------------------------------------------------
|
||
def crossLimitOrder(self):
|
||
"""基于最新数据撮合限价单"""
|
||
# 先确定会撮合成交的价格
|
||
if self.mode == self.BAR_MODE:
|
||
buyCrossPrice = self.bar.low # 若买入方向限价单价格高于该价格,则会成交
|
||
sellCrossPrice = self.bar.high # 若卖出方向限价单价格低于该价格,则会成交
|
||
buyBestCrossPrice = self.bar.open # 在当前时间点前发出的买入委托可能的最优成交价
|
||
sellBestCrossPrice = self.bar.open # 在当前时间点前发出的卖出委托可能的最优成交价
|
||
else:
|
||
buyCrossPrice = self.tick.askPrice1
|
||
sellCrossPrice = self.tick.bidPrice1
|
||
buyBestCrossPrice = self.tick.askPrice1
|
||
sellBestCrossPrice = self.tick.bidPrice1
|
||
|
||
# 遍历限价单字典中的所有限价单
|
||
for orderID, order in self.workingLimitOrderDict.items():
|
||
# 判断是否会成交
|
||
buyCross = (order.direction==DIRECTION_LONG and
|
||
order.price>=buyCrossPrice and
|
||
buyCrossPrice > 0) # 国内的tick行情在涨停时askPrice1为0,此时买无法成交
|
||
|
||
sellCross = (order.direction==DIRECTION_SHORT and
|
||
order.price<=sellCrossPrice and
|
||
sellCrossPrice > 0) # 国内的tick行情在跌停时bidPrice1为0,此时卖无法成交
|
||
|
||
# 如果发生了成交
|
||
if buyCross or sellCross:
|
||
# 推送成交数据
|
||
self.tradeCount += 1 # 成交编号自增1
|
||
tradeID = str(self.tradeCount)
|
||
trade = VtTradeData()
|
||
trade.vtSymbol = order.vtSymbol
|
||
trade.tradeID = tradeID
|
||
trade.vtTradeID = tradeID
|
||
trade.orderID = order.orderID
|
||
trade.vtOrderID = order.orderID
|
||
trade.direction = order.direction
|
||
trade.offset = order.offset
|
||
|
||
# 以买入为例:
|
||
# 1. 假设当根K线的OHLC分别为:100, 125, 90, 110
|
||
# 2. 假设在上一根K线结束(也是当前K线开始)的时刻,策略发出的委托为限价105
|
||
# 3. 则在实际中的成交价会是100而不是105,因为委托发出时市场的最优价格是100
|
||
if buyCross:
|
||
trade.price = min(order.price, buyBestCrossPrice)
|
||
self.strategy.pos += order.totalVolume
|
||
else:
|
||
trade.price = max(order.price, sellBestCrossPrice)
|
||
self.strategy.pos -= order.totalVolume
|
||
|
||
trade.volume = order.totalVolume
|
||
trade.tradeTime = str(self.dt)
|
||
trade.dt = self.dt
|
||
self.strategy.onTrade(trade)
|
||
|
||
self.tradeDict[tradeID] = trade
|
||
|
||
# 推送委托数据
|
||
order.tradedVolume = order.totalVolume
|
||
order.status = STATUS_ALLTRADED
|
||
self.strategy.onOrder(order)
|
||
|
||
# 从字典中删除该限价单
|
||
del self.workingLimitOrderDict[orderID]
|
||
|
||
#----------------------------------------------------------------------
|
||
def crossStopOrder(self):
|
||
"""基于最新数据撮合停止单"""
|
||
# 先确定会撮合成交的价格,这里和限价单规则相反
|
||
if self.mode == self.BAR_MODE:
|
||
buyCrossPrice = self.bar.high # 若买入方向停止单价格低于该价格,则会成交
|
||
sellCrossPrice = self.bar.low # 若卖出方向限价单价格高于该价格,则会成交
|
||
bestCrossPrice = self.bar.open # 最优成交价,买入停止单不能低于,卖出停止单不能高于
|
||
else:
|
||
buyCrossPrice = self.tick.lastPrice
|
||
sellCrossPrice = self.tick.lastPrice
|
||
bestCrossPrice = self.tick.lastPrice
|
||
|
||
# 遍历停止单字典中的所有停止单
|
||
for stopOrderID, so in self.workingStopOrderDict.items():
|
||
# 判断是否会成交
|
||
buyCross = so.direction==DIRECTION_LONG and so.price<=buyCrossPrice
|
||
sellCross = so.direction==DIRECTION_SHORT and so.price>=sellCrossPrice
|
||
|
||
# 如果发生了成交
|
||
if buyCross or sellCross:
|
||
# 推送成交数据
|
||
self.tradeCount += 1 # 成交编号自增1
|
||
tradeID = str(self.tradeCount)
|
||
trade = VtTradeData()
|
||
trade.vtSymbol = so.vtSymbol
|
||
trade.tradeID = tradeID
|
||
trade.vtTradeID = tradeID
|
||
|
||
if buyCross:
|
||
self.strategy.pos += so.volume
|
||
trade.price = max(bestCrossPrice, so.price)
|
||
else:
|
||
self.strategy.pos -= so.volume
|
||
trade.price = min(bestCrossPrice, so.price)
|
||
|
||
self.limitOrderCount += 1
|
||
orderID = str(self.limitOrderCount)
|
||
trade.orderID = orderID
|
||
trade.vtOrderID = orderID
|
||
|
||
trade.direction = so.direction
|
||
trade.offset = so.offset
|
||
trade.volume = so.volume
|
||
trade.tradeTime = str(self.dt)
|
||
trade.dt = self.dt
|
||
self.strategy.onTrade(trade)
|
||
|
||
self.tradeDict[tradeID] = trade
|
||
|
||
# 推送委托数据
|
||
so.status = STOPORDER_TRIGGERED
|
||
|
||
order = VtOrderData()
|
||
order.vtSymbol = so.vtSymbol
|
||
order.symbol = so.vtSymbol
|
||
order.orderID = orderID
|
||
order.vtOrderID = orderID
|
||
order.direction = so.direction
|
||
order.offset = so.offset
|
||
order.price = so.price
|
||
order.totalVolume = so.volume
|
||
order.tradedVolume = so.volume
|
||
order.status = STATUS_ALLTRADED
|
||
order.orderTime = trade.tradeTime
|
||
self.strategy.onOrder(order)
|
||
|
||
self.limitOrderDict[orderID] = order
|
||
|
||
# 从字典中删除该限价单
|
||
if stopOrderID in self.workingStopOrderDict:
|
||
del self.workingStopOrderDict[stopOrderID]
|
||
|
||
#----------------------------------------------------------------------
|
||
def insertData(self, dbName, collectionName, data):
|
||
"""考虑到回测中不允许向数据库插入数据,防止实盘交易中的一些代码出错"""
|
||
pass
|
||
|
||
#----------------------------------------------------------------------
|
||
def loadBar(self, dbName, collectionName, startDate):
|
||
"""直接返回初始化数据列表中的Bar"""
|
||
return self.initData
|
||
|
||
#----------------------------------------------------------------------
|
||
def loadTick(self, dbName, collectionName, startDate):
|
||
"""直接返回初始化数据列表中的Tick"""
|
||
return self.initData
|
||
|
||
#----------------------------------------------------------------------
|
||
def writeCtaLog(self, content):
|
||
"""记录日志"""
|
||
log = str(self.dt) + ' ' + content
|
||
self.logList.append(log)
|
||
|
||
#----------------------------------------------------------------------
|
||
def output(self, content):
|
||
"""输出内容"""
|
||
print(str(datetime.now()) + "\t" + content)
|
||
|
||
#----------------------------------------------------------------------
|
||
def calculateBacktestingResult(self):
|
||
"""
|
||
计算回测结果
|
||
"""
|
||
self.output(u'计算回测结果')
|
||
|
||
# 首先基于回测后的成交记录,计算每笔交易的盈亏
|
||
resultList = [] # 交易结果列表
|
||
|
||
longTrade = [] # 未平仓的多头交易
|
||
shortTrade = [] # 未平仓的空头交易
|
||
|
||
tradeTimeList = [] # 每笔成交时间戳
|
||
posList = [0] # 每笔成交后的持仓情况
|
||
|
||
for trade in self.tradeDict.values():
|
||
# 多头交易
|
||
if trade.direction == DIRECTION_LONG:
|
||
# 如果尚无空头交易
|
||
if not shortTrade:
|
||
longTrade.append(trade)
|
||
# 当前多头交易为平空
|
||
else:
|
||
while True:
|
||
entryTrade = shortTrade[0]
|
||
exitTrade = trade
|
||
|
||
# 清算开平仓交易
|
||
closedVolume = min(exitTrade.volume, entryTrade.volume)
|
||
result = TradingResult(entryTrade.price, entryTrade.dt,
|
||
exitTrade.price, exitTrade.dt,
|
||
-closedVolume, self.rate, self.slippage, self.size)
|
||
resultList.append(result)
|
||
|
||
posList.extend([-1,0])
|
||
tradeTimeList.extend([result.entryDt, result.exitDt])
|
||
|
||
# 计算未清算部分
|
||
entryTrade.volume -= closedVolume
|
||
exitTrade.volume -= closedVolume
|
||
|
||
# 如果开仓交易已经全部清算,则从列表中移除
|
||
if not entryTrade.volume:
|
||
shortTrade.pop(0)
|
||
|
||
# 如果平仓交易已经全部清算,则退出循环
|
||
if not exitTrade.volume:
|
||
break
|
||
|
||
# 如果平仓交易未全部清算,
|
||
if exitTrade.volume:
|
||
# 且开仓交易已经全部清算完,则平仓交易剩余的部分
|
||
# 等于新的反向开仓交易,添加到队列中
|
||
if not shortTrade:
|
||
longTrade.append(exitTrade)
|
||
break
|
||
# 如果开仓交易还有剩余,则进入下一轮循环
|
||
else:
|
||
pass
|
||
|
||
# 空头交易
|
||
else:
|
||
# 如果尚无多头交易
|
||
if not longTrade:
|
||
shortTrade.append(trade)
|
||
# 当前空头交易为平多
|
||
else:
|
||
while True:
|
||
entryTrade = longTrade[0]
|
||
exitTrade = trade
|
||
|
||
# 清算开平仓交易
|
||
closedVolume = min(exitTrade.volume, entryTrade.volume)
|
||
result = TradingResult(entryTrade.price, entryTrade.dt,
|
||
exitTrade.price, exitTrade.dt,
|
||
closedVolume, self.rate, self.slippage, self.size)
|
||
resultList.append(result)
|
||
|
||
posList.extend([1,0])
|
||
tradeTimeList.extend([result.entryDt, result.exitDt])
|
||
|
||
# 计算未清算部分
|
||
entryTrade.volume -= closedVolume
|
||
exitTrade.volume -= closedVolume
|
||
|
||
# 如果开仓交易已经全部清算,则从列表中移除
|
||
if not entryTrade.volume:
|
||
longTrade.pop(0)
|
||
|
||
# 如果平仓交易已经全部清算,则退出循环
|
||
if not exitTrade.volume:
|
||
break
|
||
|
||
# 如果平仓交易未全部清算,
|
||
if exitTrade.volume:
|
||
# 且开仓交易已经全部清算完,则平仓交易剩余的部分
|
||
# 等于新的反向开仓交易,添加到队列中
|
||
if not longTrade:
|
||
shortTrade.append(exitTrade)
|
||
break
|
||
# 如果开仓交易还有剩余,则进入下一轮循环
|
||
else:
|
||
pass
|
||
|
||
# 检查是否有交易
|
||
if not resultList:
|
||
self.output(u'无交易结果')
|
||
return {}
|
||
|
||
# 然后基于每笔交易的结果,我们可以计算具体的盈亏曲线和最大回撤等
|
||
capital = 0 # 资金
|
||
maxCapital = 0 # 资金最高净值
|
||
drawdown = 0 # 回撤
|
||
|
||
totalResult = 0 # 总成交数量
|
||
totalTurnover = 0 # 总成交金额(合约面值)
|
||
totalCommission = 0 # 总手续费
|
||
totalSlippage = 0 # 总滑点
|
||
|
||
timeList = [] # 时间序列
|
||
pnlList = [] # 每笔盈亏序列
|
||
capitalList = [] # 盈亏汇总的时间序列
|
||
drawdownList = [] # 回撤的时间序列
|
||
|
||
winningResult = 0 # 盈利次数
|
||
losingResult = 0 # 亏损次数
|
||
totalWinning = 0 # 总盈利金额
|
||
totalLosing = 0 # 总亏损金额
|
||
|
||
for result in resultList:
|
||
capital += result.pnl
|
||
maxCapital = max(capital, maxCapital)
|
||
drawdown = capital - maxCapital
|
||
|
||
pnlList.append(result.pnl)
|
||
timeList.append(result.exitDt) # 交易的时间戳使用平仓时间
|
||
capitalList.append(capital)
|
||
drawdownList.append(drawdown)
|
||
|
||
totalResult += 1
|
||
totalTurnover += result.turnover
|
||
totalCommission += result.commission
|
||
totalSlippage += result.slippage
|
||
|
||
if result.pnl >= 0:
|
||
winningResult += 1
|
||
totalWinning += result.pnl
|
||
else:
|
||
losingResult += 1
|
||
totalLosing += result.pnl
|
||
|
||
# 计算盈亏相关数据
|
||
winningRate = winningResult/totalResult*100 # 胜率
|
||
|
||
averageWinning = 0 # 这里把数据都初始化为0
|
||
averageLosing = 0
|
||
profitLossRatio = 0
|
||
|
||
if winningResult:
|
||
averageWinning = totalWinning/winningResult # 平均每笔盈利
|
||
if losingResult:
|
||
averageLosing = totalLosing/losingResult # 平均每笔亏损
|
||
if averageLosing:
|
||
profitLossRatio = -averageWinning/averageLosing # 盈亏比
|
||
|
||
# 返回回测结果
|
||
d = {}
|
||
d['capital'] = capital
|
||
d['maxCapital'] = maxCapital
|
||
d['drawdown'] = drawdown
|
||
d['totalResult'] = totalResult
|
||
d['totalTurnover'] = totalTurnover
|
||
d['totalCommission'] = totalCommission
|
||
d['totalSlippage'] = totalSlippage
|
||
d['timeList'] = timeList
|
||
d['pnlList'] = pnlList
|
||
d['capitalList'] = capitalList
|
||
d['drawdownList'] = drawdownList
|
||
d['winningRate'] = winningRate
|
||
d['averageWinning'] = averageWinning
|
||
d['averageLosing'] = averageLosing
|
||
d['profitLossRatio'] = profitLossRatio
|
||
d['posList'] = posList
|
||
d['tradeTimeList'] = tradeTimeList
|
||
|
||
return d
|
||
|
||
#----------------------------------------------------------------------
|
||
def showBacktestingResult(self):
|
||
"""显示回测结果"""
|
||
d = self.calculateBacktestingResult()
|
||
|
||
# 输出
|
||
self.output('-' * 30)
|
||
self.output(u'第一笔交易:\t%s' % d['timeList'][0])
|
||
self.output(u'最后一笔交易:\t%s' % d['timeList'][-1])
|
||
|
||
self.output(u'总交易次数:\t%s' % formatNumber(d['totalResult']))
|
||
self.output(u'总盈亏:\t%s' % formatNumber(d['capital']))
|
||
self.output(u'最大回撤: \t%s' % formatNumber(min(d['drawdownList'])))
|
||
|
||
self.output(u'平均每笔盈利:\t%s' %formatNumber(d['capital']/d['totalResult']))
|
||
self.output(u'平均每笔滑点:\t%s' %formatNumber(d['totalSlippage']/d['totalResult']))
|
||
self.output(u'平均每笔佣金:\t%s' %formatNumber(d['totalCommission']/d['totalResult']))
|
||
|
||
self.output(u'胜率\t\t%s%%' %formatNumber(d['winningRate']))
|
||
self.output(u'盈利交易平均值\t%s' %formatNumber(d['averageWinning']))
|
||
self.output(u'亏损交易平均值\t%s' %formatNumber(d['averageLosing']))
|
||
self.output(u'盈亏比:\t%s' %formatNumber(d['profitLossRatio']))
|
||
|
||
# 绘图
|
||
import matplotlib.pyplot as plt
|
||
import numpy as np
|
||
|
||
try:
|
||
import seaborn as sns # 如果安装了seaborn则设置为白色风格
|
||
sns.set_style('whitegrid')
|
||
except ImportError:
|
||
pass
|
||
|
||
pCapital = plt.subplot(4, 1, 1)
|
||
pCapital.set_ylabel("capital")
|
||
pCapital.plot(d['capitalList'], color='r', lw=0.8)
|
||
|
||
pDD = plt.subplot(4, 1, 2)
|
||
pDD.set_ylabel("DD")
|
||
pDD.bar(range(len(d['drawdownList'])), d['drawdownList'], color='g')
|
||
|
||
pPnl = plt.subplot(4, 1, 3)
|
||
pPnl.set_ylabel("pnl")
|
||
pPnl.hist(d['pnlList'], bins=50, color='c')
|
||
|
||
pPos = plt.subplot(4, 1, 4)
|
||
pPos.set_ylabel("Position")
|
||
if d['posList'][-1] == 0:
|
||
del d['posList'][-1]
|
||
tradeTimeIndex = [item.strftime("%m/%d %H:%M:%S") for item in d['tradeTimeList']]
|
||
xindex = np.arange(0, len(tradeTimeIndex), np.int(len(tradeTimeIndex)/10))
|
||
tradeTimeIndex = map(lambda i: tradeTimeIndex[i], xindex)
|
||
pPos.plot(d['posList'], color='k', drawstyle='steps-pre')
|
||
pPos.set_ylim(-1.2, 1.2)
|
||
plt.sca(pPos)
|
||
plt.tight_layout()
|
||
plt.xticks(xindex, tradeTimeIndex, rotation=30) # 旋转15
|
||
|
||
plt.show()
|
||
|
||
#----------------------------------------------------------------------
|
||
def putStrategyEvent(self, name):
|
||
"""发送策略更新事件,回测中忽略"""
|
||
pass
|
||
|
||
#----------------------------------------------------------------------
|
||
def setSlippage(self, slippage):
|
||
"""设置滑点点数"""
|
||
self.slippage = slippage
|
||
|
||
#----------------------------------------------------------------------
|
||
def setSize(self, size):
|
||
"""设置合约大小"""
|
||
self.size = size
|
||
|
||
#----------------------------------------------------------------------
|
||
def setRate(self, rate):
|
||
"""设置佣金比例"""
|
||
self.rate = rate
|
||
|
||
#----------------------------------------------------------------------
|
||
def setPriceTick(self, priceTick):
|
||
"""设置价格最小变动"""
|
||
self.priceTick = priceTick
|
||
|
||
#----------------------------------------------------------------------
|
||
def runOptimization(self, strategyClass, optimizationSetting):
|
||
"""优化参数"""
|
||
# 获取优化设置
|
||
settingList = optimizationSetting.generateSetting()
|
||
targetName = optimizationSetting.optimizeTarget
|
||
|
||
# 检查参数设置问题
|
||
if not settingList or not targetName:
|
||
self.output(u'优化设置有问题,请检查')
|
||
|
||
# 遍历优化
|
||
resultList = []
|
||
for setting in settingList:
|
||
self.clearBacktestingResult()
|
||
self.output('-' * 30)
|
||
self.output('setting: %s' %str(setting))
|
||
self.initStrategy(strategyClass, setting)
|
||
self.runBacktesting()
|
||
d = self.calculateBacktestingResult()
|
||
try:
|
||
targetValue = d[targetName]
|
||
except KeyError:
|
||
targetValue = 0
|
||
resultList.append(([str(setting)], targetValue))
|
||
|
||
# 显示结果
|
||
resultList.sort(reverse=True, key=lambda result:result[1])
|
||
self.output('-' * 30)
|
||
self.output(u'优化结果:')
|
||
for result in resultList:
|
||
self.output(u'%s: %s' %(result[0], result[1]))
|
||
return result
|
||
|
||
#----------------------------------------------------------------------
|
||
def clearBacktestingResult(self):
|
||
"""清空之前回测的结果"""
|
||
# 清空限价单相关
|
||
self.limitOrderCount = 0
|
||
self.limitOrderDict.clear()
|
||
self.workingLimitOrderDict.clear()
|
||
|
||
# 清空停止单相关
|
||
self.stopOrderCount = 0
|
||
self.stopOrderDict.clear()
|
||
self.workingStopOrderDict.clear()
|
||
|
||
# 清空成交相关
|
||
self.tradeCount = 0
|
||
self.tradeDict.clear()
|
||
|
||
#----------------------------------------------------------------------
|
||
def runParallelOptimization(self, strategyClass, optimizationSetting):
|
||
"""并行优化参数"""
|
||
# 获取优化设置
|
||
settingList = optimizationSetting.generateSetting()
|
||
targetName = optimizationSetting.optimizeTarget
|
||
|
||
# 检查参数设置问题
|
||
if not settingList or not targetName:
|
||
self.output(u'优化设置有问题,请检查')
|
||
|
||
# 多进程优化,启动一个对应CPU核心数量的进程池
|
||
pool = multiprocessing.Pool(multiprocessing.cpu_count())
|
||
l = []
|
||
|
||
for setting in settingList:
|
||
l.append(pool.apply_async(optimize, (strategyClass, setting,
|
||
targetName, self.mode,
|
||
self.startDate, self.initDays, self.endDate,
|
||
self.slippage, self.rate, self.size,
|
||
self.dbName, self.symbol)))
|
||
pool.close()
|
||
pool.join()
|
||
|
||
# 显示结果
|
||
resultList = [res.get() for res in l]
|
||
resultList.sort(reverse=True, key=lambda result:result[1])
|
||
self.output('-' * 30)
|
||
self.output(u'优化结果:')
|
||
for result in resultList:
|
||
self.output(u'%s: %s' %(result[0], result[1]))
|
||
|
||
#----------------------------------------------------------------------
|
||
def roundToPriceTick(self, price):
|
||
"""取整价格到合约最小价格变动"""
|
||
if not self.priceTick:
|
||
return price
|
||
|
||
newPrice = round(price/self.priceTick, 0) * self.priceTick
|
||
return newPrice
|
||
|
||
|
||
|
||
########################################################################
|
||
class TradingResult(object):
|
||
"""每笔交易的结果"""
|
||
|
||
#----------------------------------------------------------------------
|
||
def __init__(self, entryPrice, entryDt, exitPrice,
|
||
exitDt, volume, rate, slippage, size):
|
||
"""Constructor"""
|
||
self.entryPrice = entryPrice # 开仓价格
|
||
self.exitPrice = exitPrice # 平仓价格
|
||
|
||
self.entryDt = entryDt # 开仓时间datetime
|
||
self.exitDt = exitDt # 平仓时间
|
||
|
||
self.volume = volume # 交易数量(+/-代表方向)
|
||
|
||
self.turnover = (self.entryPrice+self.exitPrice)*size*abs(volume) # 成交金额
|
||
self.commission = self.turnover*rate # 手续费成本
|
||
self.slippage = slippage*2*size*abs(volume) # 滑点成本
|
||
self.pnl = ((self.exitPrice - self.entryPrice) * volume * size
|
||
- self.commission - self.slippage) # 净盈亏
|
||
|
||
|
||
|
||
########################################################################
|
||
class OptimizationSetting(object):
|
||
"""优化设置"""
|
||
|
||
#----------------------------------------------------------------------
|
||
def __init__(self):
|
||
"""Constructor"""
|
||
self.paramDict = OrderedDict()
|
||
|
||
self.optimizeTarget = '' # 优化目标字段
|
||
|
||
#----------------------------------------------------------------------
|
||
def addParameter(self, name, start, end=None, step=None):
|
||
"""增加优化参数"""
|
||
if end is None and step is None:
|
||
self.paramDict[name] = [start]
|
||
return
|
||
|
||
if end < start:
|
||
print(u'参数起始点必须不大于终止点')
|
||
return
|
||
|
||
if step <= 0:
|
||
print(u'参数布进必须大于0')
|
||
return
|
||
|
||
l = []
|
||
param = start
|
||
|
||
while param <= end:
|
||
l.append(param)
|
||
param += step
|
||
|
||
self.paramDict[name] = l
|
||
|
||
#----------------------------------------------------------------------
|
||
def generateSetting(self):
|
||
"""生成优化参数组合"""
|
||
# 参数名的列表
|
||
nameList = self.paramDict.keys()
|
||
paramList = self.paramDict.values()
|
||
|
||
# 使用迭代工具生产参数对组合
|
||
productList = list(product(*paramList))
|
||
|
||
# 把参数对组合打包到一个个字典组成的列表中
|
||
settingList = []
|
||
for p in productList:
|
||
d = dict(zip(nameList, p))
|
||
settingList.append(d)
|
||
|
||
return settingList
|
||
|
||
#----------------------------------------------------------------------
|
||
def setOptimizeTarget(self, target):
|
||
"""设置优化目标字段"""
|
||
self.optimizeTarget = target
|
||
|
||
|
||
#----------------------------------------------------------------------
|
||
def formatNumber(n):
|
||
"""格式化数字到字符串"""
|
||
rn = round(n, 2) # 保留两位小数
|
||
return format(rn, ',') # 加上千分符
|
||
|
||
|
||
#----------------------------------------------------------------------
|
||
def optimize(strategyClass, setting, targetName,
|
||
mode, startDate, initDays, endDate,
|
||
slippage, rate, size,
|
||
dbName, symbol):
|
||
"""多进程优化时跑在每个进程中运行的函数"""
|
||
engine = BacktestingEngine()
|
||
engine.setBacktestingMode(mode)
|
||
engine.setStartDate(startDate, initDays)
|
||
engine.setEndDate(endDate)
|
||
engine.setSlippage(slippage)
|
||
engine.setRate(rate)
|
||
engine.setSize(size)
|
||
engine.setDatabase(dbName, symbol)
|
||
|
||
engine.initStrategy(strategyClass, setting)
|
||
engine.runBacktesting()
|
||
d = engine.calculateBacktestingResult()
|
||
try:
|
||
targetValue = d[targetName]
|
||
except KeyError:
|
||
targetValue = 0
|
||
return (str(setting), targetValue)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# 以下内容是一段回测脚本的演示,用户可以根据自己的需求修改
|
||
# 建议使用ipython notebook或者spyder来做回测
|
||
# 同样可以在命令模式下进行回测(一行一行输入运行)
|
||
from strategy.strategyEmaDemo import *
|
||
|
||
# 创建回测引擎
|
||
engine = BacktestingEngine()
|
||
|
||
# 设置引擎的回测模式为K线
|
||
engine.setBacktestingMode(engine.BAR_MODE)
|
||
|
||
# 设置回测用的数据起始日期
|
||
engine.setStartDate('20110101')
|
||
|
||
# 载入历史数据到引擎中
|
||
engine.setDatabase(MINUTE_DB_NAME, 'IF0000')
|
||
|
||
# 设置产品相关参数
|
||
engine.setSlippage(0.2) # 股指1跳
|
||
engine.setRate(0.3/10000) # 万0.3
|
||
engine.setSize(300) # 股指合约大小
|
||
|
||
# 在引擎中创建策略对象
|
||
engine.initStrategy(EmaDemoStrategy, {})
|
||
|
||
# 开始跑回测
|
||
engine.runBacktesting()
|
||
|
||
# 显示回测结果
|
||
# spyder或者ipython notebook中运行时,会弹出盈亏曲线图
|
||
# 直接在cmd中回测则只会打印一些回测数值
|
||
engine.showBacktestingResult()
|
||
|
||
|