vnpy/vn.trader/ctaStrategy/ctaBacktesting.py
2017-04-09 09:42:00 +08:00

986 lines
39 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# encoding: UTF-8
'''
本文件中包含的是CTA模块的回测引擎回测引擎的API和CTA引擎一致
可以使用和实盘相同的代码进行回测。
'''
from __future__ import division
from datetime import datetime, timedelta
from collections import OrderedDict
from itertools import product
import multiprocessing
import pymongo
from ctaBase import *
from vtConstant import *
from vtGateway import VtOrderData, VtTradeData
from vtFunction import loadMongoSetting
########################################################################
class BacktestingEngine(object):
"""
CTA回测引擎
函数接口和策略引擎保持一样,
从而实现同一套代码从回测到实盘。
"""
TICK_MODE = 'tick'
BAR_MODE = 'bar'
#----------------------------------------------------------------------
def __init__(self):
"""Constructor"""
# 本地停止单编号计数
self.stopOrderCount = 0
# stopOrderID = STOPORDERPREFIX + str(stopOrderCount)
# 本地停止单字典
# key为stopOrderIDvalue为stopOrder对象
self.stopOrderDict = {} # 停止单撤销后不会从本字典中删除
self.workingStopOrderDict = {} # 停止单撤销后会从本字典中删除
# 引擎类型为回测
self.engineType = ENGINETYPE_BACKTESTING
# 回测相关
self.strategy = None # 回测策略
self.mode = self.BAR_MODE # 回测模式默认为K线
self.startDate = ''
self.initDays = 0
self.endDate = ''
self.slippage = 0 # 回测时假设的滑点
self.rate = 0 # 回测时假设的佣金比例(适用于百分比佣金)
self.size = 1 # 合约大小默认为1
self.priceTick = 0 # 价格最小变动
self.dbClient = None # 数据库客户端
self.dbCursor = None # 数据库指针
#self.historyData = [] # 历史数据的列表,回测用
self.initData = [] # 初始化用的数据
#self.backtestingData = [] # 回测用的数据
self.dbName = '' # 回测数据库名
self.symbol = '' # 回测集合名
self.dataStartDate = None # 回测数据开始日期datetime对象
self.dataEndDate = None # 回测数据结束日期datetime对象
self.strategyStartDate = None # 策略启动日期即前面的数据用于初始化datetime对象
self.limitOrderDict = OrderedDict() # 限价单字典
self.workingLimitOrderDict = OrderedDict() # 活动限价单字典,用于进行撮合用
self.limitOrderCount = 0 # 限价单编号
self.tradeCount = 0 # 成交编号
self.tradeDict = OrderedDict() # 成交字典
self.logList = [] # 日志记录
# 当前最新数据,用于模拟成交用
self.tick = None
self.bar = None
self.dt = None # 最新的时间
#----------------------------------------------------------------------
def setStartDate(self, startDate='20100416', initDays=10):
"""设置回测的启动日期"""
self.startDate = startDate
self.initDays = initDays
self.dataStartDate = datetime.strptime(startDate, '%Y%m%d')
initTimeDelta = timedelta(initDays)
self.strategyStartDate = self.dataStartDate + initTimeDelta
#----------------------------------------------------------------------
def setEndDate(self, endDate=''):
"""设置回测的结束日期"""
self.endDate = endDate
if endDate:
self.dataEndDate= datetime.strptime(endDate, '%Y%m%d')
# 若不修改时间则会导致不包含dataEndDate当天数据
self.dataEndDate.replace(hour=23, minute=59)
#----------------------------------------------------------------------
def setBacktestingMode(self, mode):
"""设置回测模式"""
self.mode = mode
#----------------------------------------------------------------------
def setDatabase(self, dbName, symbol):
"""设置历史数据所用的数据库"""
self.dbName = dbName
self.symbol = symbol
#----------------------------------------------------------------------
def loadHistoryData(self):
"""载入历史数据"""
host, port, logging = loadMongoSetting()
self.dbClient = pymongo.MongoClient(host, port)
collection = self.dbClient[self.dbName][self.symbol]
self.output(u'开始载入数据')
# 首先根据回测模式,确认要使用的数据类
if self.mode == self.BAR_MODE:
dataClass = CtaBarData
func = self.newBar
else:
dataClass = CtaTickData
func = self.newTick
# 载入初始化需要用的数据
flt = {'datetime':{'$gte':self.dataStartDate,
'$lt':self.strategyStartDate}}
initCursor = collection.find(flt)
# 将数据从查询指针中读取出,并生成列表
self.initData = [] # 清空initData列表
for d in initCursor:
data = dataClass()
data.__dict__ = d
self.initData.append(data)
# 载入回测数据
if not self.dataEndDate:
flt = {'datetime':{'$gte':self.strategyStartDate}} # 数据过滤条件
else:
flt = {'datetime':{'$gte':self.strategyStartDate,
'$lte':self.dataEndDate}}
self.dbCursor = collection.find(flt)
self.output(u'载入完成,数据量:%s' %(initCursor.count() + self.dbCursor.count()))
#----------------------------------------------------------------------
def runBacktesting(self):
"""运行回测"""
# 载入历史数据
self.loadHistoryData()
# 首先根据回测模式,确认要使用的数据类
if self.mode == self.BAR_MODE:
dataClass = CtaBarData
func = self.newBar
else:
dataClass = CtaTickData
func = self.newTick
self.output(u'开始回测')
self.strategy.inited = True
self.strategy.onInit()
self.output(u'策略初始化完成')
self.strategy.trading = True
self.strategy.onStart()
self.output(u'策略启动完成')
self.output(u'开始回放数据')
for d in self.dbCursor:
data = dataClass()
data.__dict__ = d
func(data)
self.output(u'数据回放结束')
#----------------------------------------------------------------------
def newBar(self, bar):
"""新的K线"""
self.bar = bar
self.dt = bar.datetime
self.crossLimitOrder() # 先撮合限价单
self.crossStopOrder() # 再撮合停止单
self.strategy.onBar(bar) # 推送K线到策略中
#----------------------------------------------------------------------
def newTick(self, tick):
"""新的Tick"""
self.tick = tick
self.dt = tick.datetime
self.crossLimitOrder()
self.crossStopOrder()
self.strategy.onTick(tick)
#----------------------------------------------------------------------
def initStrategy(self, strategyClass, setting=None):
"""
初始化策略
setting是策略的参数设置如果使用类中写好的默认设置则可以不传该参数
"""
self.strategy = strategyClass(self, setting)
self.strategy.name = self.strategy.className
#----------------------------------------------------------------------
def sendOrder(self, vtSymbol, orderType, price, volume, strategy):
"""发单"""
self.limitOrderCount += 1
orderID = str(self.limitOrderCount)
order = VtOrderData()
order.vtSymbol = vtSymbol
order.price = self.roundToPriceTick(price)
order.totalVolume = volume
order.status = STATUS_NOTTRADED # 刚提交尚未成交
order.orderID = orderID
order.vtOrderID = orderID
order.orderTime = str(self.dt)
# CTA委托类型映射
if orderType == CTAORDER_BUY:
order.direction = DIRECTION_LONG
order.offset = OFFSET_OPEN
elif orderType == CTAORDER_SELL:
order.direction = DIRECTION_SHORT
order.offset = OFFSET_CLOSE
elif orderType == CTAORDER_SHORT:
order.direction = DIRECTION_SHORT
order.offset = OFFSET_OPEN
elif orderType == CTAORDER_COVER:
order.direction = DIRECTION_LONG
order.offset = OFFSET_CLOSE
# 保存到限价单字典中
self.workingLimitOrderDict[orderID] = order
self.limitOrderDict[orderID] = order
return orderID
#----------------------------------------------------------------------
def cancelOrder(self, vtOrderID):
"""撤单"""
if vtOrderID in self.workingLimitOrderDict:
order = self.workingLimitOrderDict[vtOrderID]
order.status = STATUS_CANCELLED
order.cancelTime = str(self.dt)
del self.workingLimitOrderDict[vtOrderID]
#----------------------------------------------------------------------
def sendStopOrder(self, vtSymbol, orderType, price, volume, strategy):
"""发停止单(本地实现)"""
self.stopOrderCount += 1
stopOrderID = STOPORDERPREFIX + str(self.stopOrderCount)
so = StopOrder()
so.vtSymbol = vtSymbol
so.price = self.roundToPriceTick(price)
so.volume = volume
so.strategy = strategy
so.stopOrderID = stopOrderID
so.status = STOPORDER_WAITING
if orderType == CTAORDER_BUY:
so.direction = DIRECTION_LONG
so.offset = OFFSET_OPEN
elif orderType == CTAORDER_SELL:
so.direction = DIRECTION_SHORT
so.offset = OFFSET_CLOSE
elif orderType == CTAORDER_SHORT:
so.direction = DIRECTION_SHORT
so.offset = OFFSET_OPEN
elif orderType == CTAORDER_COVER:
so.direction = DIRECTION_LONG
so.offset = OFFSET_CLOSE
# 保存stopOrder对象到字典中
self.stopOrderDict[stopOrderID] = so
self.workingStopOrderDict[stopOrderID] = so
return stopOrderID
#----------------------------------------------------------------------
def cancelStopOrder(self, stopOrderID):
"""撤销停止单"""
# 检查停止单是否存在
if stopOrderID in self.workingStopOrderDict:
so = self.workingStopOrderDict[stopOrderID]
so.status = STOPORDER_CANCELLED
del self.workingStopOrderDict[stopOrderID]
#----------------------------------------------------------------------
def crossLimitOrder(self):
"""基于最新数据撮合限价单"""
# 先确定会撮合成交的价格
if self.mode == self.BAR_MODE:
buyCrossPrice = self.bar.low # 若买入方向限价单价格高于该价格,则会成交
sellCrossPrice = self.bar.high # 若卖出方向限价单价格低于该价格,则会成交
buyBestCrossPrice = self.bar.open # 在当前时间点前发出的买入委托可能的最优成交价
sellBestCrossPrice = self.bar.open # 在当前时间点前发出的卖出委托可能的最优成交价
else:
buyCrossPrice = self.tick.askPrice1
sellCrossPrice = self.tick.bidPrice1
buyBestCrossPrice = self.tick.askPrice1
sellBestCrossPrice = self.tick.bidPrice1
# 遍历限价单字典中的所有限价单
for orderID, order in self.workingLimitOrderDict.items():
# 判断是否会成交
buyCross = (order.direction==DIRECTION_LONG and
order.price>=buyCrossPrice and
buyCrossPrice > 0) # 国内的tick行情在涨停时askPrice1为0此时买无法成交
sellCross = (order.direction==DIRECTION_SHORT and
order.price<=sellCrossPrice and
sellCrossPrice > 0) # 国内的tick行情在跌停时bidPrice1为0此时卖无法成交
# 如果发生了成交
if buyCross or sellCross:
# 推送成交数据
self.tradeCount += 1 # 成交编号自增1
tradeID = str(self.tradeCount)
trade = VtTradeData()
trade.vtSymbol = order.vtSymbol
trade.tradeID = tradeID
trade.vtTradeID = tradeID
trade.orderID = order.orderID
trade.vtOrderID = order.orderID
trade.direction = order.direction
trade.offset = order.offset
# 以买入为例:
# 1. 假设当根K线的OHLC分别为100, 125, 90, 110
# 2. 假设在上一根K线结束(也是当前K线开始)的时刻策略发出的委托为限价105
# 3. 则在实际中的成交价会是100而不是105因为委托发出时市场的最优价格是100
if buyCross:
trade.price = min(order.price, buyBestCrossPrice)
self.strategy.pos += order.totalVolume
else:
trade.price = max(order.price, sellBestCrossPrice)
self.strategy.pos -= order.totalVolume
trade.volume = order.totalVolume
trade.tradeTime = str(self.dt)
trade.dt = self.dt
self.strategy.onTrade(trade)
self.tradeDict[tradeID] = trade
# 推送委托数据
order.tradedVolume = order.totalVolume
order.status = STATUS_ALLTRADED
self.strategy.onOrder(order)
# 从字典中删除该限价单
del self.workingLimitOrderDict[orderID]
#----------------------------------------------------------------------
def crossStopOrder(self):
"""基于最新数据撮合停止单"""
# 先确定会撮合成交的价格,这里和限价单规则相反
if self.mode == self.BAR_MODE:
buyCrossPrice = self.bar.high # 若买入方向停止单价格低于该价格,则会成交
sellCrossPrice = self.bar.low # 若卖出方向限价单价格高于该价格,则会成交
bestCrossPrice = self.bar.open # 最优成交价,买入停止单不能低于,卖出停止单不能高于
else:
buyCrossPrice = self.tick.lastPrice
sellCrossPrice = self.tick.lastPrice
bestCrossPrice = self.tick.lastPrice
# 遍历停止单字典中的所有停止单
for stopOrderID, so in self.workingStopOrderDict.items():
# 判断是否会成交
buyCross = so.direction==DIRECTION_LONG and so.price<=buyCrossPrice
sellCross = so.direction==DIRECTION_SHORT and so.price>=sellCrossPrice
# 如果发生了成交
if buyCross or sellCross:
# 推送成交数据
self.tradeCount += 1 # 成交编号自增1
tradeID = str(self.tradeCount)
trade = VtTradeData()
trade.vtSymbol = so.vtSymbol
trade.tradeID = tradeID
trade.vtTradeID = tradeID
if buyCross:
self.strategy.pos += so.volume
trade.price = max(bestCrossPrice, so.price)
else:
self.strategy.pos -= so.volume
trade.price = min(bestCrossPrice, so.price)
self.limitOrderCount += 1
orderID = str(self.limitOrderCount)
trade.orderID = orderID
trade.vtOrderID = orderID
trade.direction = so.direction
trade.offset = so.offset
trade.volume = so.volume
trade.tradeTime = str(self.dt)
trade.dt = self.dt
self.strategy.onTrade(trade)
self.tradeDict[tradeID] = trade
# 推送委托数据
so.status = STOPORDER_TRIGGERED
order = VtOrderData()
order.vtSymbol = so.vtSymbol
order.symbol = so.vtSymbol
order.orderID = orderID
order.vtOrderID = orderID
order.direction = so.direction
order.offset = so.offset
order.price = so.price
order.totalVolume = so.volume
order.tradedVolume = so.volume
order.status = STATUS_ALLTRADED
order.orderTime = trade.tradeTime
self.strategy.onOrder(order)
self.limitOrderDict[orderID] = order
# 从字典中删除该限价单
if stopOrderID in self.workingStopOrderDict:
del self.workingStopOrderDict[stopOrderID]
#----------------------------------------------------------------------
def insertData(self, dbName, collectionName, data):
"""考虑到回测中不允许向数据库插入数据,防止实盘交易中的一些代码出错"""
pass
#----------------------------------------------------------------------
def loadBar(self, dbName, collectionName, startDate):
"""直接返回初始化数据列表中的Bar"""
return self.initData
#----------------------------------------------------------------------
def loadTick(self, dbName, collectionName, startDate):
"""直接返回初始化数据列表中的Tick"""
return self.initData
#----------------------------------------------------------------------
def writeCtaLog(self, content):
"""记录日志"""
log = str(self.dt) + ' ' + content
self.logList.append(log)
#----------------------------------------------------------------------
def output(self, content):
"""输出内容"""
print str(datetime.now()) + "\t" + content
#----------------------------------------------------------------------
def calculateBacktestingResult(self):
"""
计算回测结果
"""
self.output(u'计算回测结果')
# 首先基于回测后的成交记录,计算每笔交易的盈亏
resultList = [] # 交易结果列表
longTrade = [] # 未平仓的多头交易
shortTrade = [] # 未平仓的空头交易
tradeTimeList = [] # 每笔成交时间戳
posList = [0] # 每笔成交后的持仓情况
for trade in self.tradeDict.values():
# 多头交易
if trade.direction == DIRECTION_LONG:
# 如果尚无空头交易
if not shortTrade:
longTrade.append(trade)
# 当前多头交易为平空
else:
while True:
entryTrade = shortTrade[0]
exitTrade = trade
# 清算开平仓交易
closedVolume = min(exitTrade.volume, entryTrade.volume)
result = TradingResult(entryTrade.price, entryTrade.dt,
exitTrade.price, exitTrade.dt,
-closedVolume, self.rate, self.slippage, self.size)
resultList.append(result)
posList.extend([-1,0])
tradeTimeList.extend([result.entryDt, result.exitDt])
# 计算未清算部分
entryTrade.volume -= closedVolume
exitTrade.volume -= closedVolume
# 如果开仓交易已经全部清算,则从列表中移除
if not entryTrade.volume:
shortTrade.pop(0)
# 如果平仓交易已经全部清算,则退出循环
if not exitTrade.volume:
break
# 如果平仓交易未全部清算,
if exitTrade.volume:
# 且开仓交易已经全部清算完,则平仓交易剩余的部分
# 等于新的反向开仓交易,添加到队列中
if not shortTrade:
longTrade.append(exitTrade)
break
# 如果开仓交易还有剩余,则进入下一轮循环
else:
pass
# 空头交易
else:
# 如果尚无多头交易
if not longTrade:
shortTrade.append(trade)
# 当前空头交易为平多
else:
while True:
entryTrade = longTrade[0]
exitTrade = trade
# 清算开平仓交易
closedVolume = min(exitTrade.volume, entryTrade.volume)
result = TradingResult(entryTrade.price, entryTrade.dt,
exitTrade.price, exitTrade.dt,
closedVolume, self.rate, self.slippage, self.size)
resultList.append(result)
posList.extend([1,0])
tradeTimeList.extend([result.entryDt, result.exitDt])
# 计算未清算部分
entryTrade.volume -= closedVolume
exitTrade.volume -= closedVolume
# 如果开仓交易已经全部清算,则从列表中移除
if not entryTrade.volume:
longTrade.pop(0)
# 如果平仓交易已经全部清算,则退出循环
if not exitTrade.volume:
break
# 如果平仓交易未全部清算,
if exitTrade.volume:
# 且开仓交易已经全部清算完,则平仓交易剩余的部分
# 等于新的反向开仓交易,添加到队列中
if not longTrade:
shortTrade.append(exitTrade)
break
# 如果开仓交易还有剩余,则进入下一轮循环
else:
pass
# 检查是否有交易
if not resultList:
self.output(u'无交易结果')
return {}
# 然后基于每笔交易的结果,我们可以计算具体的盈亏曲线和最大回撤等
capital = 0 # 资金
maxCapital = 0 # 资金最高净值
drawdown = 0 # 回撤
totalResult = 0 # 总成交数量
totalTurnover = 0 # 总成交金额(合约面值)
totalCommission = 0 # 总手续费
totalSlippage = 0 # 总滑点
timeList = [] # 时间序列
pnlList = [] # 每笔盈亏序列
capitalList = [] # 盈亏汇总的时间序列
drawdownList = [] # 回撤的时间序列
winningResult = 0 # 盈利次数
losingResult = 0 # 亏损次数
totalWinning = 0 # 总盈利金额
totalLosing = 0 # 总亏损金额
for result in resultList:
capital += result.pnl
maxCapital = max(capital, maxCapital)
drawdown = capital - maxCapital
pnlList.append(result.pnl)
timeList.append(result.exitDt) # 交易的时间戳使用平仓时间
capitalList.append(capital)
drawdownList.append(drawdown)
totalResult += 1
totalTurnover += result.turnover
totalCommission += result.commission
totalSlippage += result.slippage
if result.pnl >= 0:
winningResult += 1
totalWinning += result.pnl
else:
losingResult += 1
totalLosing += result.pnl
# 计算盈亏相关数据
winningRate = winningResult/totalResult*100 # 胜率
averageWinning = 0 # 这里把数据都初始化为0
averageLosing = 0
profitLossRatio = 0
if winningResult:
averageWinning = totalWinning/winningResult # 平均每笔盈利
if losingResult:
averageLosing = totalLosing/losingResult # 平均每笔亏损
if averageLosing:
profitLossRatio = -averageWinning/averageLosing # 盈亏比
# 返回回测结果
d = {}
d['capital'] = capital
d['maxCapital'] = maxCapital
d['drawdown'] = drawdown
d['totalResult'] = totalResult
d['totalTurnover'] = totalTurnover
d['totalCommission'] = totalCommission
d['totalSlippage'] = totalSlippage
d['timeList'] = timeList
d['pnlList'] = pnlList
d['capitalList'] = capitalList
d['drawdownList'] = drawdownList
d['winningRate'] = winningRate
d['averageWinning'] = averageWinning
d['averageLosing'] = averageLosing
d['profitLossRatio'] = profitLossRatio
d['posList'] = posList
d['tradeTimeList'] = tradeTimeList
return d
#----------------------------------------------------------------------
def showBacktestingResult(self):
"""显示回测结果"""
d = self.calculateBacktestingResult()
# 输出
self.output('-' * 30)
self.output(u'第一笔交易:\t%s' % d['timeList'][0])
self.output(u'最后一笔交易:\t%s' % d['timeList'][-1])
self.output(u'总交易次数:\t%s' % formatNumber(d['totalResult']))
self.output(u'总盈亏:\t%s' % formatNumber(d['capital']))
self.output(u'最大回撤: \t%s' % formatNumber(min(d['drawdownList'])))
self.output(u'平均每笔盈利:\t%s' %formatNumber(d['capital']/d['totalResult']))
self.output(u'平均每笔滑点:\t%s' %formatNumber(d['totalSlippage']/d['totalResult']))
self.output(u'平均每笔佣金:\t%s' %formatNumber(d['totalCommission']/d['totalResult']))
self.output(u'胜率\t\t%s%%' %formatNumber(d['winningRate']))
self.output(u'盈利交易平均值\t%s' %formatNumber(d['averageWinning']))
self.output(u'亏损交易平均值\t%s' %formatNumber(d['averageLosing']))
self.output(u'盈亏比:\t%s' %formatNumber(d['profitLossRatio']))
# 绘图
import matplotlib.pyplot as plt
import numpy as np
try:
import seaborn as sns # 如果安装了seaborn则设置为白色风格
sns.set_style('whitegrid')
except ImportError:
pass
pCapital = plt.subplot(4, 1, 1)
pCapital.set_ylabel("capital")
pCapital.plot(d['capitalList'], color='r', lw=0.8)
pDD = plt.subplot(4, 1, 2)
pDD.set_ylabel("DD")
pDD.bar(range(len(d['drawdownList'])), d['drawdownList'], color='g')
pPnl = plt.subplot(4, 1, 3)
pPnl.set_ylabel("pnl")
pPnl.hist(d['pnlList'], bins=50, color='c')
pPos = plt.subplot(4, 1, 4)
pPos.set_ylabel("Position")
if d['posList'][-1] == 0:
del d['posList'][-1]
tradeTimeIndex = [item.strftime("%m/%d %H:%M:%S") for item in d['tradeTimeList']]
xindex = np.arange(0, len(tradeTimeIndex), np.int(len(tradeTimeIndex)/10))
tradeTimeIndex = map(lambda i: tradeTimeIndex[i], xindex)
pPos.plot(d['posList'], color='k', drawstyle='steps-pre')
pPos.set_ylim(-1.2, 1.2)
plt.sca(pPos)
plt.tight_layout()
plt.xticks(xindex, tradeTimeIndex, rotation=30) # 旋转15
plt.show()
#----------------------------------------------------------------------
def putStrategyEvent(self, name):
"""发送策略更新事件回测中忽略"""
pass
#----------------------------------------------------------------------
def setSlippage(self, slippage):
"""设置滑点点数"""
self.slippage = slippage
#----------------------------------------------------------------------
def setSize(self, size):
"""设置合约大小"""
self.size = size
#----------------------------------------------------------------------
def setRate(self, rate):
"""设置佣金比例"""
self.rate = rate
#----------------------------------------------------------------------
def setPriceTick(self, priceTick):
"""设置价格最小变动"""
self.priceTick = priceTick
#----------------------------------------------------------------------
def runOptimization(self, strategyClass, optimizationSetting):
"""优化参数"""
# 获取优化设置
settingList = optimizationSetting.generateSetting()
targetName = optimizationSetting.optimizeTarget
# 检查参数设置问题
if not settingList or not targetName:
self.output(u'优化设置有问题,请检查')
# 遍历优化
resultList = []
for setting in settingList:
self.clearBacktestingResult()
self.output('-' * 30)
self.output('setting: %s' %str(setting))
self.initStrategy(strategyClass, setting)
self.runBacktesting()
d = self.calculateBacktestingResult()
try:
targetValue = d[targetName]
except KeyError:
targetValue = 0
resultList.append(([str(setting)], targetValue))
# 显示结果
resultList.sort(reverse=True, key=lambda result:result[1])
self.output('-' * 30)
self.output(u'优化结果:')
for result in resultList:
self.output(u'%s: %s' %(result[0], result[1]))
return result
#----------------------------------------------------------------------
def clearBacktestingResult(self):
"""清空之前回测的结果"""
# 清空限价单相关
self.limitOrderCount = 0
self.limitOrderDict.clear()
self.workingLimitOrderDict.clear()
# 清空停止单相关
self.stopOrderCount = 0
self.stopOrderDict.clear()
self.workingStopOrderDict.clear()
# 清空成交相关
self.tradeCount = 0
self.tradeDict.clear()
#----------------------------------------------------------------------
def runParallelOptimization(self, strategyClass, optimizationSetting):
"""并行优化参数"""
# 获取优化设置
settingList = optimizationSetting.generateSetting()
targetName = optimizationSetting.optimizeTarget
# 检查参数设置问题
if not settingList or not targetName:
self.output(u'优化设置有问题,请检查')
# 多进程优化启动一个对应CPU核心数量的进程池
pool = multiprocessing.Pool(multiprocessing.cpu_count())
l = []
for setting in settingList:
l.append(pool.apply_async(optimize, (strategyClass, setting,
targetName, self.mode,
self.startDate, self.initDays, self.endDate,
self.slippage, self.rate, self.size,
self.dbName, self.symbol)))
pool.close()
pool.join()
# 显示结果
resultList = [res.get() for res in l]
resultList.sort(reverse=True, key=lambda result:result[1])
self.output('-' * 30)
self.output(u'优化结果:')
for result in resultList:
self.output(u'%s: %s' %(result[0], result[1]))
#----------------------------------------------------------------------
def roundToPriceTick(self, price):
"""取整价格到合约最小价格变动"""
if not self.priceTick:
return price
newPrice = round(price/self.priceTick, 0) * self.priceTick
return newPrice
########################################################################
class TradingResult(object):
"""每笔交易的结果"""
#----------------------------------------------------------------------
def __init__(self, entryPrice, entryDt, exitPrice,
exitDt, volume, rate, slippage, size):
"""Constructor"""
self.entryPrice = entryPrice # 开仓价格
self.exitPrice = exitPrice # 平仓价格
self.entryDt = entryDt # 开仓时间datetime
self.exitDt = exitDt # 平仓时间
self.volume = volume # 交易数量(+/-代表方向)
self.turnover = (self.entryPrice+self.exitPrice)*size*abs(volume) # 成交金额
self.commission = self.turnover*rate # 手续费成本
self.slippage = slippage*2*size*abs(volume) # 滑点成本
self.pnl = ((self.exitPrice - self.entryPrice) * volume * size
- self.commission - self.slippage) # 净盈亏
########################################################################
class OptimizationSetting(object):
"""优化设置"""
#----------------------------------------------------------------------
def __init__(self):
"""Constructor"""
self.paramDict = OrderedDict()
self.optimizeTarget = '' # 优化目标字段
#----------------------------------------------------------------------
def addParameter(self, name, start, end=None, step=None):
"""增加优化参数"""
if end is None and step is None:
self.paramDict[name] = [start]
return
if end < start:
print u'参数起始点必须不大于终止点'
return
if step <= 0:
print u'参数布进必须大于0'
return
l = []
param = start
while param <= end:
l.append(param)
param += step
self.paramDict[name] = l
#----------------------------------------------------------------------
def generateSetting(self):
"""生成优化参数组合"""
# 参数名的列表
nameList = self.paramDict.keys()
paramList = self.paramDict.values()
# 使用迭代工具生产参数对组合
productList = list(product(*paramList))
# 把参数对组合打包到一个个字典组成的列表中
settingList = []
for p in productList:
d = dict(zip(nameList, p))
settingList.append(d)
return settingList
#----------------------------------------------------------------------
def setOptimizeTarget(self, target):
"""设置优化目标字段"""
self.optimizeTarget = target
#----------------------------------------------------------------------
def formatNumber(n):
"""格式化数字到字符串"""
rn = round(n, 2) # 保留两位小数
return format(rn, ',') # 加上千分符
#----------------------------------------------------------------------
def optimize(strategyClass, setting, targetName,
mode, startDate, initDays, endDate,
slippage, rate, size,
dbName, symbol):
"""多进程优化时跑在每个进程中运行的函数"""
engine = BacktestingEngine()
engine.setBacktestingMode(mode)
engine.setStartDate(startDate, initDays)
engine.setEndDate(endDate)
engine.setSlippage(slippage)
engine.setRate(rate)
engine.setSize(size)
engine.setDatabase(dbName, symbol)
engine.initStrategy(strategyClass, setting)
engine.runBacktesting()
d = engine.calculateBacktestingResult()
try:
targetValue = d[targetName]
except KeyError:
targetValue = 0
return (str(setting), targetValue)
if __name__ == '__main__':
# 以下内容是一段回测脚本的演示,用户可以根据自己的需求修改
# 建议使用ipython notebook或者spyder来做回测
# 同样可以在命令模式下进行回测(一行一行输入运行)
from strategy.strategyEmaDemo import *
# 创建回测引擎
engine = BacktestingEngine()
# 设置引擎的回测模式为K线
engine.setBacktestingMode(engine.BAR_MODE)
# 设置回测用的数据起始日期
engine.setStartDate('20110101')
# 载入历史数据到引擎中
engine.setDatabase(MINUTE_DB_NAME, 'IF0000')
# 设置产品相关参数
engine.setSlippage(0.2) # 股指1跳
engine.setRate(0.3/10000) # 万0.3
engine.setSize(300) # 股指合约大小
# 在引擎中创建策略对象
engine.initStrategy(EmaDemoStrategy, {})
# 开始跑回测
engine.runBacktesting()
# 显示回测结果
# spyder或者ipython notebook中运行时会弹出盈亏曲线图
# 直接在cmd中回测则只会打印一些回测数值
engine.showBacktestingResult()