{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "from datetime import datetime\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from turtleEngine import BacktestingEngine" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "coercing to Unicode: need string or buffer, int found", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mengine\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mBacktestingEngine\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mengine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msetPeriod\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m2015\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdatetime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m2018\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m11\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m9\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mengine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minitPortfolio\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m10000000\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'setting.csv'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32mC:\\Github\\vnpy\\examples\\TurtleStrategy\\turtleEngine.py\u001b[0m in \u001b[0;36minitPortfolio\u001b[1;34m(self, filename, portfolioValue)\u001b[0m\n\u001b[0;32m 60\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0minitPortfolio\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mportfolioValue\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m10000000\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 61\u001b[0m \u001b[1;34m\"\"\"\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 62\u001b[1;33m \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 63\u001b[0m \u001b[0mr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mDictReader\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 64\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0md\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mr\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mTypeError\u001b[0m: coercing to Unicode: need string or buffer, int found" ] } ], "source": [ "engine = BacktestingEngine()\n", "engine.setPeriod(datetime(2015, 1, 1), datetime(2018, 11, 9))\n", "engine.initPortfolio('setting.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "engine.loadData()\n", "engine.runBacktesting()\n", "engine.calculateResult()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "for dt, l in engine.tradeDict.items():\n", " print dt\n", " for trade in l:\n", " print trade.vtSymbol, trade.direction, trade.offset, trade.price, trade.volume" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "for result in engine.resultList:\n", " if result.totalPnl:\n", " print result.date, result.totalPnl" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "l = [result.totalPnl for result in engine.resultList]\n", "equity = np.cumsum(l)\n", "plt.plot(equity)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 2 }