{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "#%%\n", "from vnpy.app.cta_strategy.backtesting import BacktestingEngine, OptimizationSetting\n", "from vnpy.app.cta_strategy.strategies.atr_rsi_strategy import (\n", " AtrRsiStrategy,\n", ")\n", "from datetime import datetime" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "#%%\n", "engine = BacktestingEngine()\n", "engine.set_parameters(\n", " vt_symbol=\"IF88.CFFEX\",\n", " interval=\"1m\",\n", " start=datetime(2019, 1, 1),\n", " end=datetime(2019, 4, 30),\n", " rate=0.3/10000,\n", " slippage=0.2,\n", " size=300,\n", " pricetick=0.2,\n", " capital=1_000_000,\n", ")\n", "engine.add_strategy(AtrRsiStrategy, {})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "#%%\n", "engine.load_data()\n", "engine.run_backtesting()\n", "df = engine.calculate_result()\n", "engine.calculate_statistics()\n", "engine.show_chart()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2019-05-03 16:19:04.193703\t开始运行遗传算法,每代族群总数:11, 优良品种筛选个数:8,迭代次数:30,交叉概率:0.95,突变概率:0.050000000000000044\n", "gen\tnevals\tmean \tstd \tmin \tmax \n", "0 \t11 \t[0.58423524]\t[0.30377007]\t[0.13231977]\t[1.2382818]\n", "1 \t11 \t[0.90248989]\t[0.15747112]\t[0.68707859]\t[1.2382818]\n", "2 \t11 \t[1.09406088]\t[0.18860523]\t[0.86284921]\t[1.46762684]\n", "3 \t11 \t[1.21413386]\t[0.12138014]\t[1.02072108]\t[1.46762684]\n", "4 \t11 \t[1.29561806]\t[0.09930932]\t[1.2382818] \t[1.46762684]\n", "5 \t11 \t[1.41029058]\t[0.09930932]\t[1.2382818] \t[1.46762684]\n", "6 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "7 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "8 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "9 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "10 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "11 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "12 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "13 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "14 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "15 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "16 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "17 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "18 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "19 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "20 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "21 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "22 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "23 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "24 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "25 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "26 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "27 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "28 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "29 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "30 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n", "2019-05-03 16:19:58.256354\t遗传算法优化完成,耗时54秒\n" ] }, { "data": { "text/plain": [ "[({'atr_length': 38, 'atr_ma_length': 25}, 1.4676268402266743)]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "setting = OptimizationSetting()\n", "setting.set_target(\"sharpe_ratio\")\n", "setting.add_parameter(\"atr_length\", 3, 39, 1)\n", "setting.add_parameter(\"atr_ma_length\", 10, 30, 1)\n", "\n", "engine.run_ga_optimization(setting)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "result = _" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(result)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" } }, "nbformat": 4, "nbformat_minor": 2 }