{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#VN.DATAYES - Welcome!\n", "***\n", "##1. Preface\n", "\n", "###1.1\n", "vn.datayes是一个从属于vnpy的开源历史数据模块;使用通联数据API以及MongoDB进行数据的下载和存储管理。项目目前与将来主要解决\\准备解决以下问题:\n", "\n", "* 从通联数据等API高效地爬取、更新、清洗历史数据。\n", "* 基于MongoDB的数据库管理、快速查询、转换输出格式;支持自定义符合需求的行情历史数据库。\n", "* 基于Python.Matplotlib或R.ggplot2,快速绘制K线图等可视化对象。\n", "\n", "项目目前主要包括了通联API开发者试用方案中大部分的市场行情日线数据(股票、期货、期权、指数、基金等),以及部分基本面数据。数据下载与更新主要采用多线程设计,测试效率如下:\n", "\n", "| 数据集举例 | 数据集容量 | 下载时间估计 |\n", "| :-------------: | :-------------: | :-------------: |\n", "| 股票日线数据,2800个交易代码,2013年1月1日至2015年8月1日 | 2800个collection,约500条/each | 7-10分钟 |\n", "| 股票分钟线数据,2个交易代码,2013年1月1日至2015年8月1日 | 2个collection,约20万条/each | 1-2分钟 |\n", "| 股票日线数据更新任务,2800个交易代码,2015年8月1日至2015年8月15日 | 2800个collection,约10条/each | 1-2分钟 |\n", "\n", "vn.datayes基于MongoDB数据库,通过一个json配置文件简化数据库的初始化、设置、动态更新过程。较为精细的数据库操作仍需编写脚本进行。若对MongoDB与pymongo不熟悉,推荐使用Robomongo等窗口化查看工具作为辅助。\n", "\n", "###1.2 主要依赖:\n", "pymongo, pandas, requests, json\n", "###1.3 开发测试环境:\n", "Mac OS X 10.10; Windows 7 || Anaconda.Python 2.7" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* * *\n", "##2. Get Started\n", "###2.1 准备\n", "\n", "* 下载并安装MongoDB: https://www.mongodb.org/downloads\n", "* 获取API token,以通联数据为例。\n", "\n", "![fig1](figs/fig1.png)\n", "\n", "* 更新pymongo至3.0以上版本; 更新requests等包。 \n", "```\n", "~$ pip install pymongo --upgrade\n", "~$ pip install requests --upgrade\n", "```\n", "\n", "* [ ! 注意,本模块需要pymongo3.0新加入的部分方法,使用vnpy本体所用的2.7版本对应方法将无法正常插入数据。依赖冲突的问题会尽快被解决,目前推荐制作一个virtual environment来单独运行这个模块;或者暴力切换pymongo的版本:]\n", "```\n", "~$ pip install pymongo==3.0.3 # this module.\n", "~$ pip install pymongo==2.7.2 # pymongo 2.7.\n", "```\n", "\n", "* 启动MongoDB\n", "```\n", "~$ mongod\n", "```\n", "\n", "\n", "###2.2 数据库初始化与下载\n", "* **api.Config** 对象包含了向API进行数据请求所需的信息,我们需要一个用户token来初始化这个对象。" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'domain': 'api.wmcloud.com/data',\n", " 'header': {'Authorization': 'Bearer 7c2e59e212dbff90ffd6b382c7afb57bc987a99307d382b058af6748f591d723',\n", " 'Connection': 'keep-alive'},\n", " 'ssl': False,\n", " 'version': 'v1'}" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from storage import *\n", "\n", "myConfig = Config(head=\"Zed's Config\", \n", " token='7c2e59e212dbff90ffd6b382c7afb57bc987a99307d382b058af6748f591d723')\n", "myConfig.body" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* * *\n", "* **storage.DBConfig** 对象包含了数据库配置。我们需要自己编写一个json字典来填充这个对象。举例来说,我们希望下载股票日线数据和指数日线数据,数据库名称为DATAYES_EQUITY_D1和DATAYES_INDEX_D1,index为日期“date”。那么json字典是这样的:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'client': MongoClient('localhost', 27017),\n", " 'dbNames': ['EQU_M1', 'EQU_D1', 'FUT_D1', 'OPT_D1', 'FUD_D1', 'IDX_D1'],\n", " 'dbs': {'EQU_D1': {'collNames': 'equTicker',\n", " 'index': 'date',\n", " 'self': Database(MongoClient('localhost', 27017), u'DATAYES_EQUITY_D1')},\n", " 'EQU_M1': {'collNames': 'secID',\n", " 'index': 'dateTime',\n", " 'self': Database(MongoClient('localhost', 27017), u'DATAYES_EQUITY_M1')},\n", " 'FUD_D1': {'collNames': 'fudTicker',\n", " 'index': 'date',\n", " 'self': Database(MongoClient('localhost', 27017), u'DATAYES_FUND_D1')},\n", " 'FUT_D1': {'collNames': 'futTicker',\n", " 'index': 'date',\n", " 'self': Database(MongoClient('localhost', 27017), u'DATAYES_FUTURE_D1')},\n", " 'IDX_D1': {'collNames': 'idxTicker',\n", " 'index': 'date',\n", " 'self': Database(MongoClient('localhost', 27017), u'DATAYES_INDEX_D1')},\n", " 'OPT_D1': {'collNames': 'optTicker',\n", " 'index': 'date',\n", " 'self': Database(MongoClient('localhost', 27017), u'DATAYES_OPTION_D1')}}}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "client = pymongo.MongoClient() # pymongo.connection object.\n", "\n", "body = {\n", " 'client': client, # connection object.\n", " 'dbs': {\n", " 'EQU_D1': { # in-python alias: 'EQU_D1'\n", " 'self': client['DATAYES_EQUITY_D1'], # pymongo.database[name] object.\n", " 'index': 'date', # index name.\n", " 'collNames': 'equTicker' # what are collection names consist of.\n", " },\n", " 'IDX_D1': { # Another database\n", " 'self': client['DATAYES_INDEX_D1'],\n", " 'index': 'date',\n", " 'collNames': 'idxTicker'\n", " }\n", " },\n", " 'dbNames': ['EQU_D1','IDX_D1'] # List of alias.\n", "}\n", "\n", "myDbConfig_ = DBConfig(body=body)\n", "\n", "# 这看上去有些麻烦;不想这么做的话可以直接使用DBConfig的默认构造函数。\n", "\n", "myDbConfig = DBConfig()\n", "\n", "myDbConfig.body" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* * *\n", "* **api.PyApi**是向网络数据源进行请求的主要对象。**storage.MongodController**是进行数据库管理的对象。当我们完成了配置对象的构造,即可初始化PyApi与MongodController。**MongodController._get_coll_names()** 和**MongodController._ensure_index()** 是数据库初始化所调用的方法,为了模块开发的方便,它们暂时没有被放进构造函数中自动执行。" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[MONGOD]: Collection names gotten.\n", "[MONGOD]: MongoDB index set.\n" ] }, { "data": { "text/plain": [ "1" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "myApi = PyApi(myConfig) # construct PyApi object.\n", "mc = MongodController(api=myApi, config=myDbConfig) # construct MongodController object, \n", " # on the top of PyApi.\n", "mc._get_coll_names() # get names of collections.\n", "mc._ensure_index() # ensure collection indices." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![fig2](figs/fig2.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* 使用**MongodController.download#()**方法进行下载。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mc.download_index_D1('20150101','20150801')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![fig3](figs/fig3.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###2.3 数据库更新\n", "* 使用**MongodController.update#()**方法进行更新。脚本会自动寻找数据库中的最后一日并更新至最新交易日。" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "datetime.datetime(2015, 8, 17, 10, 49, 21, 37758)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from datetime import datetime\n", "datetime.now()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mc.update_index_D1()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![fig4](figs/fig4.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###2.4 Mac OS或Linux下的下载与更新\n", "模块中包含了一些shell脚本,方面在linux-like os下的数据下载、更新。\n", "```\n", "~$ cd path/of/vn/datayes\n", "~$ chmod +x prepare.sh\n", "~$ ./prepare.sh\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![fig5](figs/fig5.png)\n", "![fig6](figs/fig6.png)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }