# CTA回测模块 CTA回测模块是基于PyQt5和pyqtgraph的图形化回测工具。启动VN Trader后,在菜单栏中点击“功能-> CTA回测”即可进入该图形化回测界面,如下图。CTA回测模块主要实现3个功能:历史行情数据的下载、策略回测、参数优化。 ![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/cta_backtester.png)   ## 加载启动 进入图形化回测界面“CTA回测”后,会立刻完成初始化工作:初始化回测引擎、初始化RQData客户端。 ``` def init_engine(self): """""" self.write_log("初始化CTA回测引擎") self.backtesting_engine = BacktestingEngine() # Redirect log from backtesting engine outside. self.backtesting_engine.output = self.write_log self.write_log("策略文件加载完成") self.init_rqdata() def init_rqdata(self): """ Init RQData client. """ result = rqdata_client.init() if result: self.write_log("RQData数据接口初始化成功") ```   ## 下载数据 在开始策略回测之前,必须保证数据库内有充足的历史数据。故vnpy提供了历史数据一键下载的功能。 下载数据功能主要是基于RQData的get_price()函数实现的。 ``` get_price( order_book_ids, start_date='2013-01-04', end_date='2014-01-04', frequency='1d', fields=None, adjust_type='pre', skip_suspended =False, market='cn' ) ``` 在使用前要保证RQData初始化完毕,然后填写以下4个字段信息: - 本地代码:格式为合约品种+交易所,如IF88.CFFEX、rb88.SHFE;然后在底层通过RqdataClient的to_rq_symbol()函数转换成符合RQData格式,对应RQData中get_price()函数的order_book_ids字段。 - K线周期:可以填1m、60m、1d,对应get_price()函数的frequency字段。 - 开始日期:格式为yy/mm/dd,如2017/4/21,对应get_price()函数的start_date字段。(点击窗口右侧箭头按钮可改变日期大小) - 结束日期:格式为yy/mm/dd,如2019/4/22,对应get_price()函数的end_date字段。(点击窗口右侧箭头按钮可改变日期大小) 填写完字段信息后,点击下方“下载数据”按钮启动下载程序,下载成功如图所示。 ![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/data_loader.png)   ## 策略回测 下载完历史数据后,需要配置以下字段:交易策略、手续费率、交易滑点、合约乘数、价格跳动、回测资金。 这些字段主要对应BacktesterEngine类的run_backtesting函数。 ``` def run_backtesting( self, class_name: str, vt_symbol: str, interval: str, start: datetime, end: datetime, rate: float, slippage: float, size: int, pricetick: float, capital: int, setting: dict ): ``` 如果没有RqData用于下载历史数据(一般情况),则可以通过完整填写所有字段,从本地已连接的数据库中导入数据进行回测 注:本地代码应以品种代码.交易所的形式(导入时会自动将其分割为品种和交易所两部分) 点击下方的“开始回测”按钮可以开始回测: 首先会弹出如图所示的参数配置窗口,用于调整策略参数。该设置对应的是run_backtesting()函数的setting字典。 ![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/parameter_setting.png) 点击“确认”按钮后开始运行回测,同时日志界面会输出相关信息,如图。 ![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/backtesting_log.png) 回测完成后会显示统计数字图表。   ### 统计数据 用于显示回测完成后的相关统计数值, 如结束资金、总收益率、夏普比率、收益回撤比。 ![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/show_result.png)   ### 图表分析 以下四个图分别是代表账号净值、净值回撤、每日盈亏、盈亏分布。 ![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/show_result_chat.png)   ## 参数优化 vnpy提供2种参数优化的解决方案:穷举算法、遗传算法   ### 穷举算法 穷举算法原理: - 输入需要优化的参数名、优化区间、优化步进,以及优化目标。 ``` def add_parameter( self, name: str, start: float, end: float = None, step: float = None ): """""" if not end and not step: self.params[name] = [start] return if start >= end: print("参数优化起始点必须小于终止点") return if step <= 0: print("参数优化步进必须大于0") return value = start value_list = [] while value <= end: value_list.append(value) value += step self.params[name] = value_list def set_target(self, target_name: str): """""" self.target_name = target_name ```   - 形成全局参数组合, 数据结构为[{key: value, key: value}, {key: value, key: value}]。 ``` def generate_setting(self): """""" keys = self.params.keys() values = self.params.values() products = list(product(*values)) settings = [] for p in products: setting = dict(zip(keys, p)) settings.append(setting) return settings ```   - 遍历全局中的每一个参数组合:遍历的过程即运行一次策略回测,并且返回优化目标数值;然后根据目标数值排序,输出优化结果。 ``` def run_optimization(self, optimization_setting: OptimizationSetting, output=True): """""" # Get optimization setting and target settings = optimization_setting.generate_setting() target_name = optimization_setting.target_name if not settings: self.output("优化参数组合为空,请检查") return if not target_name: self.output("优化目标未设置,请检查") return # Use multiprocessing pool for running backtesting with different setting pool = multiprocessing.Pool(multiprocessing.cpu_count()) results = [] for setting in settings: result = (pool.apply_async(optimize, ( target_name, self.strategy_class, setting, self.vt_symbol, self.interval, self.start, self.rate, self.slippage, self.size, self.pricetick, self.capital, self.end, self.mode ))) results.append(result) pool.close() pool.join() # Sort results and output result_values = [result.get() for result in results] result_values.sort(reverse=True, key=lambda result: result[1]) if output: for value in result_values: msg = f"参数:{value[0]}, 目标:{value[1]}" self.output(msg) return result_values ``` 注意:可以使用multiprocessing库来创建多进程实现并行优化。例如:若用户计算机是2核,优化时间为原来1/2;若计算机是10核,优化时间为原来1/10。   穷举算法操作: - 点击“参数优化”按钮,会弹出“优化参数配置”窗口,用于设置优化目标(如最大化夏普比率、最大化收益回撤比)和设置需要优化的参数以及优化区间,如图。 ![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_setting.png) - 设置好需要优化的参数后,点击“优化参数配置”窗口下方的“确认”按钮开始进行调用CPU多核进行多进程并行优化,同时日志会输出相关信息。 ![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_log.png) - 点击“优化结果”按钮可以看出优化结果,如图的参数组合是基于目标数值(夏普比率)由高到低的顺序排列的。 ![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_result.png)   ### 遗传算法 遗传算法原理: - 输入需要优化的参数名、优化区间、优化步进,以及优化目标; - 形成全局参数组合,该组合的数据结构是列表内镶嵌元组,即\[[(key, value), (key, value)] , [(key, value), (key,value)]],与穷举算法的全局参数组合的数据结构不同。这样做的目的是有利于参数间进行交叉互换和变异。 ``` def generate_setting_ga(self): """""" settings_ga = [] settings = self.generate_setting() for d in settings: param = [tuple(i) for i in d.items()] settings_ga.append(param) return settings_ga ```   - 形成个体:调用random()函数随机从全局参数组合中获取参数。 ``` def generate_parameter(): """""" return random.choice(settings) ```   - 定义个体变异规则: 即发生变异时,旧的个体完全被新的个体替代。 ``` def mutate_individual(individual, indpb): """""" size = len(individual) paramlist = generate_parameter() for i in range(size): if random.random() < indpb: individual[i] = paramlist[i] return individual, ```   - 定义评估函数:入参的是个体,即[(key, value), (key, value)]形式的参数组合,然后通过dict()转化成setting字典,然后运行回测,输出目标优化数值,如夏普比率、收益回撤比。(注意,修饰器@lru_cache作用是缓存计算结果,避免遇到相同的输入重复计算,大大降低运行遗传算法的时间) ``` @lru_cache(maxsize=1000000) def _ga_optimize(parameter_values: tuple): """""" setting = dict(parameter_values) result = optimize( ga_target_name, ga_strategy_class, setting, ga_vt_symbol, ga_interval, ga_start, ga_rate, ga_slippage, ga_size, ga_pricetick, ga_capital, ga_end, ga_mode ) return (result[1],) def ga_optimize(parameter_values: list): """""" return _ga_optimize(tuple(parameter_values)) ```   - 运行遗传算法:调用deap库的算法引擎来运行遗传算法,其具体流程如下。 1)先定义优化方向,如夏普比率最大化; 2)然后随机从全局参数组合获取个体,并形成族群; 3)对族群内所有个体进行评估(即运行回测),并且剔除表现不好个体; 4)剩下的个体会进行交叉或者变异,通过评估和筛选后形成新的族群;(到此为止是完整的一次种群迭代过程); 5)多次迭代后,种群内差异性减少,整体适应性提高,最终输出建议结果。该结果为帕累托解集,可以是1个或者多个参数组合。 注意:由于用到了@lru_cache, 迭代中后期的速度回提高非常多,因为很多重复的输入都避免了再次的回测,直接在内存中查询并且返回计算结果。 ``` from deap import creator, base, tools, algorithms creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) ...... # Set up genetic algorithem toolbox = base.Toolbox() toolbox.register("individual", tools.initIterate, creator.Individual, generate_parameter) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", mutate_individual, indpb=1) toolbox.register("evaluate", ga_optimize) toolbox.register("select", tools.selNSGA2) total_size = len(settings) pop_size = population_size # number of individuals in each generation lambda_ = pop_size # number of children to produce at each generation mu = int(pop_size * 0.8) # number of individuals to select for the next generation cxpb = 0.95 # probability that an offspring is produced by crossover mutpb = 1 - cxpb # probability that an offspring is produced by mutation ngen = ngen_size # number of generation pop = toolbox.population(pop_size) hof = tools.ParetoFront() # end result of pareto front stats = tools.Statistics(lambda ind: ind.fitness.values) np.set_printoptions(suppress=True) stats.register("mean", np.mean, axis=0) stats.register("std", np.std, axis=0) stats.register("min", np.min, axis=0) stats.register("max", np.max, axis=0) algorithms.eaMuPlusLambda( pop, toolbox, mu, lambda_, cxpb, mutpb, ngen, stats, halloffame=hof ) # Return result list results = [] for parameter_values in hof: setting = dict(parameter_values) target_value = ga_optimize(parameter_values)[0] results.append((setting, target_value, {})) return results ```