[Mod]set all statistics to 0 if no trade in backtesting
This commit is contained in:
parent
38aabe1b09
commit
f467afcf5e
@ -300,56 +300,81 @@ class BacktestingEngine:
|
||||
|
||||
if not df:
|
||||
df = self.daily_df
|
||||
|
||||
# Calculate balance related time series data
|
||||
df["balance"] = df["net_pnl"].cumsum() + self.capital
|
||||
df["return"] = np.log(df["balance"] / df["balance"].shift(1)).fillna(0)
|
||||
df["highlevel"] = (
|
||||
df["balance"].rolling(
|
||||
min_periods=1, window=len(df), center=False).max()
|
||||
)
|
||||
df["drawdown"] = df["balance"] - df["highlevel"]
|
||||
df["ddpercent"] = df["drawdown"] / df["highlevel"] * 100
|
||||
|
||||
# Calculate statistics value
|
||||
start_date = df.index[0]
|
||||
end_date = df.index[-1]
|
||||
|
||||
total_days = len(df)
|
||||
profit_days = len(df[df["net_pnl"] > 0])
|
||||
loss_days = len(df[df["net_pnl"] < 0])
|
||||
|
||||
end_balance = df["balance"].iloc[-1]
|
||||
max_drawdown = df["drawdown"].min()
|
||||
max_ddpercent = df["ddpercent"].min()
|
||||
|
||||
total_net_pnl = df["net_pnl"].sum()
|
||||
daily_net_pnl = total_net_pnl / total_days
|
||||
|
||||
total_commission = df["commission"].sum()
|
||||
daily_commission = total_commission / total_days
|
||||
|
||||
total_slippage = df["slippage"].sum()
|
||||
daily_slippage = total_slippage / total_days
|
||||
|
||||
total_turnover = df["turnover"].sum()
|
||||
daily_turnover = total_turnover / total_days
|
||||
|
||||
total_trade_count = df["trade_count"].sum()
|
||||
daily_trade_count = total_trade_count / total_days
|
||||
|
||||
total_return = (end_balance / self.capital - 1) * 100
|
||||
annual_return = total_return / total_days * 240
|
||||
daily_return = df["return"].mean() * 100
|
||||
return_std = df["return"].std() * 100
|
||||
|
||||
if return_std:
|
||||
sharpe_ratio = daily_return / return_std * np.sqrt(240)
|
||||
else:
|
||||
|
||||
if df is None:
|
||||
# Set all statistics to 0 if no trade.
|
||||
start_date = ""
|
||||
end_date = ""
|
||||
total_days = 0
|
||||
profit_days = 0
|
||||
loss_days = 0
|
||||
end_balance = 0
|
||||
max_drawdown = 0
|
||||
max_ddpercent = 0
|
||||
total_net_pnl = 0
|
||||
daily_net_pnl = 0
|
||||
total_commission = 0
|
||||
daily_commission = 0
|
||||
total_slippage = 0
|
||||
daily_slippage = 0
|
||||
total_turnover = 0
|
||||
daily_turnover = 0
|
||||
total_trade_count = 0
|
||||
daily_trade_count = 0
|
||||
total_return = 0
|
||||
annual_return = 0
|
||||
daily_return = 0
|
||||
return_std = 0
|
||||
sharpe_ratio = 0
|
||||
else:
|
||||
# Calculate balance related time series data
|
||||
df["balance"] = df["net_pnl"].cumsum() + self.capital
|
||||
df["return"] = np.log(df["balance"] / df["balance"].shift(1)).fillna(0)
|
||||
df["highlevel"] = (
|
||||
df["balance"].rolling(
|
||||
min_periods=1, window=len(df), center=False).max()
|
||||
)
|
||||
df["drawdown"] = df["balance"] - df["highlevel"]
|
||||
df["ddpercent"] = df["drawdown"] / df["highlevel"] * 100
|
||||
|
||||
# Calculate statistics value
|
||||
start_date = df.index[0]
|
||||
end_date = df.index[-1]
|
||||
|
||||
total_days = len(df)
|
||||
profit_days = len(df[df["net_pnl"] > 0])
|
||||
loss_days = len(df[df["net_pnl"] < 0])
|
||||
|
||||
end_balance = df["balance"].iloc[-1]
|
||||
max_drawdown = df["drawdown"].min()
|
||||
max_ddpercent = df["ddpercent"].min()
|
||||
|
||||
total_net_pnl = df["net_pnl"].sum()
|
||||
daily_net_pnl = total_net_pnl / total_days
|
||||
|
||||
total_commission = df["commission"].sum()
|
||||
daily_commission = total_commission / total_days
|
||||
|
||||
total_slippage = df["slippage"].sum()
|
||||
daily_slippage = total_slippage / total_days
|
||||
|
||||
total_turnover = df["turnover"].sum()
|
||||
daily_turnover = total_turnover / total_days
|
||||
|
||||
total_trade_count = df["trade_count"].sum()
|
||||
daily_trade_count = total_trade_count / total_days
|
||||
|
||||
total_return = (end_balance / self.capital - 1) * 100
|
||||
annual_return = total_return / total_days * 240
|
||||
daily_return = df["return"].mean() * 100
|
||||
return_std = df["return"].std() * 100
|
||||
|
||||
if return_std:
|
||||
sharpe_ratio = daily_return / return_std * np.sqrt(240)
|
||||
else:
|
||||
sharpe_ratio = 0
|
||||
|
||||
# Output
|
||||
# 输出统计结果
|
||||
self.output("-" * 30)
|
||||
self.output(f"首个交易日:\t{start_date}")
|
||||
self.output(f"最后交易日:\t{end_date}")
|
||||
@ -414,6 +439,9 @@ class BacktestingEngine:
|
||||
""""""
|
||||
if not df:
|
||||
df = self.daily_df
|
||||
|
||||
if df is None:
|
||||
return
|
||||
|
||||
plt.figure(figsize=(10, 16))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user