[Add] start developing spread backtesting function
This commit is contained in:
parent
f39859a546
commit
ddbf62d47a
716
vnpy/app/spread_trading/backtesting.py
Normal file
716
vnpy/app/spread_trading/backtesting.py
Normal file
@ -0,0 +1,716 @@
|
||||
from collections import defaultdict
|
||||
from datetime import date, datetime, timedelta
|
||||
from typing import Callable
|
||||
from functools import lru_cache
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
from pandas import DataFrame
|
||||
|
||||
from vnpy.trader.constant import (Direction, Offset, Exchange,
|
||||
Interval, Status)
|
||||
from vnpy.trader.database import database_manager
|
||||
from vnpy.trader.object import TradeData, BarData, TickData
|
||||
from vnpy.trader.utility import round_to
|
||||
|
||||
from .template import SpreadStrategyTemplate
|
||||
from .base import SpreadData, BacktestingMode
|
||||
|
||||
sns.set_style("whitegrid")
|
||||
|
||||
|
||||
class BacktestingEngine:
|
||||
""""""
|
||||
|
||||
gateway_name = "BACKTESTING"
|
||||
|
||||
def __init__(self):
|
||||
""""""
|
||||
self.spread: SpreadData = None
|
||||
|
||||
self.start = None
|
||||
self.end = None
|
||||
self.rate = 0
|
||||
self.slippage = 0
|
||||
self.size = 1
|
||||
self.pricetick = 0
|
||||
self.capital = 1_000_000
|
||||
self.mode = BacktestingMode.BAR
|
||||
|
||||
self.strategy_class = None
|
||||
self.strategy = None
|
||||
self.tick: TickData = None
|
||||
self.bar: BarData = None
|
||||
self.datetime = None
|
||||
|
||||
self.interval = None
|
||||
self.days = 0
|
||||
self.callback = None
|
||||
self.history_data = []
|
||||
|
||||
self.algo_count = 0
|
||||
self.algos = {}
|
||||
self.active_algos = {}
|
||||
|
||||
self.trade_count = 0
|
||||
self.trades = {}
|
||||
|
||||
self.logs = []
|
||||
|
||||
self.daily_results = {}
|
||||
self.daily_df = None
|
||||
|
||||
def output(self, msg):
|
||||
"""
|
||||
Output message of backtesting engine.
|
||||
"""
|
||||
print(f"{datetime.now()}\t{msg}")
|
||||
|
||||
def clear_data(self):
|
||||
"""
|
||||
Clear all data of last backtesting.
|
||||
"""
|
||||
self.strategy = None
|
||||
self.tick = None
|
||||
self.bar = None
|
||||
self.datetime = None
|
||||
|
||||
self.algo_count = 0
|
||||
self.algos.clear()
|
||||
self.active_algos.clear()
|
||||
|
||||
self.trade_count = 0
|
||||
self.trades.clear()
|
||||
|
||||
self.logs.clear()
|
||||
self.daily_results.clear()
|
||||
|
||||
def set_parameters(
|
||||
self,
|
||||
spread: SpreadData,
|
||||
interval: Interval,
|
||||
start: datetime,
|
||||
rate: float,
|
||||
slippage: float,
|
||||
size: float,
|
||||
pricetick: float,
|
||||
capital: int = 0,
|
||||
end: datetime = None,
|
||||
mode: BacktestingMode = BacktestingMode.BAR
|
||||
):
|
||||
""""""
|
||||
self.spread = spread
|
||||
self.interval = Interval(interval)
|
||||
self.rate = rate
|
||||
self.slippage = slippage
|
||||
self.size = size
|
||||
self.pricetick = pricetick
|
||||
self.start = start
|
||||
self.capital = capital
|
||||
self.end = end
|
||||
self.mode = mode
|
||||
|
||||
def add_strategy(self, strategy_class: type, setting: dict):
|
||||
""""""
|
||||
self.strategy_class = strategy_class
|
||||
|
||||
self.strategy = strategy_class(
|
||||
self,
|
||||
strategy_class.__name__,
|
||||
self.spread,
|
||||
setting
|
||||
)
|
||||
|
||||
def load_data(self):
|
||||
""""""
|
||||
self.output("开始加载历史数据")
|
||||
|
||||
if not self.end:
|
||||
self.end = datetime.now()
|
||||
|
||||
if self.start >= self.end:
|
||||
self.output("起始日期必须小于结束日期")
|
||||
return
|
||||
|
||||
if self.mode == BacktestingMode.BAR:
|
||||
self.history_data = load_bar_data(
|
||||
self.spread,
|
||||
self.interval,
|
||||
self.start,
|
||||
self.end
|
||||
)
|
||||
else:
|
||||
self.history_datas = load_tick_data(
|
||||
self.spread,
|
||||
self.start,
|
||||
self.end
|
||||
)
|
||||
|
||||
self.output(f"历史数据加载完成,数据量:{len(self.history_data)}")
|
||||
|
||||
def run_backtesting(self):
|
||||
""""""
|
||||
if self.mode == BacktestingMode.BAR:
|
||||
func = self.new_bar
|
||||
else:
|
||||
func = self.new_tick
|
||||
|
||||
self.strategy.on_init()
|
||||
|
||||
# Use the first [days] of history data for initializing strategy
|
||||
day_count = 0
|
||||
ix = 0
|
||||
|
||||
for ix, data in enumerate(self.history_data):
|
||||
if self.datetime and data.datetime.day != self.datetime.day:
|
||||
day_count += 1
|
||||
if day_count >= self.days:
|
||||
break
|
||||
|
||||
self.datetime = data.datetime
|
||||
self.callback(data)
|
||||
|
||||
self.strategy.inited = True
|
||||
self.output("策略初始化完成")
|
||||
|
||||
self.strategy.on_start()
|
||||
self.strategy.trading = True
|
||||
self.output("开始回放历史数据")
|
||||
|
||||
# Use the rest of history data for running backtesting
|
||||
for data in self.history_data[ix:]:
|
||||
func(data)
|
||||
|
||||
self.output("历史数据回放结束")
|
||||
|
||||
def calculate_result(self):
|
||||
""""""
|
||||
self.output("开始计算逐日盯市盈亏")
|
||||
|
||||
if not self.trades:
|
||||
self.output("成交记录为空,无法计算")
|
||||
return
|
||||
|
||||
# Add trade data into daily reuslt.
|
||||
for trade in self.trades.values():
|
||||
d = trade.datetime.date()
|
||||
daily_result = self.daily_results[d]
|
||||
daily_result.add_trade(trade)
|
||||
|
||||
# Calculate daily result by iteration.
|
||||
pre_close = 0
|
||||
start_pos = 0
|
||||
|
||||
for daily_result in self.daily_results.values():
|
||||
daily_result.calculate_pnl(
|
||||
pre_close,
|
||||
start_pos,
|
||||
self.size,
|
||||
self.rate,
|
||||
self.slippage,
|
||||
self.inverse
|
||||
)
|
||||
|
||||
pre_close = daily_result.close_price
|
||||
start_pos = daily_result.end_pos
|
||||
|
||||
# Generate dataframe
|
||||
results = defaultdict(list)
|
||||
|
||||
for daily_result in self.daily_results.values():
|
||||
for key, value in daily_result.__dict__.items():
|
||||
results[key].append(value)
|
||||
|
||||
self.daily_df = DataFrame.from_dict(results).set_index("date")
|
||||
|
||||
self.output("逐日盯市盈亏计算完成")
|
||||
return self.daily_df
|
||||
|
||||
def calculate_statistics(self, df: DataFrame = None, output=True):
|
||||
""""""
|
||||
self.output("开始计算策略统计指标")
|
||||
|
||||
# Check DataFrame input exterior
|
||||
if df is None:
|
||||
df = self.daily_df
|
||||
|
||||
# Check for init DataFrame
|
||||
if df is None:
|
||||
# Set all statistics to 0 if no trade.
|
||||
start_date = ""
|
||||
end_date = ""
|
||||
total_days = 0
|
||||
profit_days = 0
|
||||
loss_days = 0
|
||||
end_balance = 0
|
||||
max_drawdown = 0
|
||||
max_ddpercent = 0
|
||||
max_drawdown_duration = 0
|
||||
total_net_pnl = 0
|
||||
daily_net_pnl = 0
|
||||
total_commission = 0
|
||||
daily_commission = 0
|
||||
total_slippage = 0
|
||||
daily_slippage = 0
|
||||
total_turnover = 0
|
||||
daily_turnover = 0
|
||||
total_trade_count = 0
|
||||
daily_trade_count = 0
|
||||
total_return = 0
|
||||
annual_return = 0
|
||||
daily_return = 0
|
||||
return_std = 0
|
||||
sharpe_ratio = 0
|
||||
return_drawdown_ratio = 0
|
||||
else:
|
||||
# Calculate balance related time series data
|
||||
df["balance"] = df["net_pnl"].cumsum() + self.capital
|
||||
df["return"] = np.log(df["balance"] / df["balance"].shift(1)).fillna(0)
|
||||
df["highlevel"] = (
|
||||
df["balance"].rolling(
|
||||
min_periods=1, window=len(df), center=False).max()
|
||||
)
|
||||
df["drawdown"] = df["balance"] - df["highlevel"]
|
||||
df["ddpercent"] = df["drawdown"] / df["highlevel"] * 100
|
||||
|
||||
# Calculate statistics value
|
||||
start_date = df.index[0]
|
||||
end_date = df.index[-1]
|
||||
|
||||
total_days = len(df)
|
||||
profit_days = len(df[df["net_pnl"] > 0])
|
||||
loss_days = len(df[df["net_pnl"] < 0])
|
||||
|
||||
end_balance = df["balance"].iloc[-1]
|
||||
max_drawdown = df["drawdown"].min()
|
||||
max_ddpercent = df["ddpercent"].min()
|
||||
max_drawdown_end = df["drawdown"].idxmin()
|
||||
max_drawdown_start = df["balance"][:max_drawdown_end].argmax()
|
||||
max_drawdown_duration = (max_drawdown_end - max_drawdown_start).days
|
||||
|
||||
total_net_pnl = df["net_pnl"].sum()
|
||||
daily_net_pnl = total_net_pnl / total_days
|
||||
|
||||
total_commission = df["commission"].sum()
|
||||
daily_commission = total_commission / total_days
|
||||
|
||||
total_slippage = df["slippage"].sum()
|
||||
daily_slippage = total_slippage / total_days
|
||||
|
||||
total_turnover = df["turnover"].sum()
|
||||
daily_turnover = total_turnover / total_days
|
||||
|
||||
total_trade_count = df["trade_count"].sum()
|
||||
daily_trade_count = total_trade_count / total_days
|
||||
|
||||
total_return = (end_balance / self.capital - 1) * 100
|
||||
annual_return = total_return / total_days * 240
|
||||
daily_return = df["return"].mean() * 100
|
||||
return_std = df["return"].std() * 100
|
||||
|
||||
if return_std:
|
||||
sharpe_ratio = daily_return / return_std * np.sqrt(240)
|
||||
else:
|
||||
sharpe_ratio = 0
|
||||
|
||||
return_drawdown_ratio = -total_return / max_ddpercent
|
||||
|
||||
# Output
|
||||
if output:
|
||||
self.output("-" * 30)
|
||||
self.output(f"首个交易日:\t{start_date}")
|
||||
self.output(f"最后交易日:\t{end_date}")
|
||||
|
||||
self.output(f"总交易日:\t{total_days}")
|
||||
self.output(f"盈利交易日:\t{profit_days}")
|
||||
self.output(f"亏损交易日:\t{loss_days}")
|
||||
|
||||
self.output(f"起始资金:\t{self.capital:,.2f}")
|
||||
self.output(f"结束资金:\t{end_balance:,.2f}")
|
||||
|
||||
self.output(f"总收益率:\t{total_return:,.2f}%")
|
||||
self.output(f"年化收益:\t{annual_return:,.2f}%")
|
||||
self.output(f"最大回撤: \t{max_drawdown:,.2f}")
|
||||
self.output(f"百分比最大回撤: {max_ddpercent:,.2f}%")
|
||||
self.output(f"最长回撤天数: \t{max_drawdown_duration}")
|
||||
|
||||
self.output(f"总盈亏:\t{total_net_pnl:,.2f}")
|
||||
self.output(f"总手续费:\t{total_commission:,.2f}")
|
||||
self.output(f"总滑点:\t{total_slippage:,.2f}")
|
||||
self.output(f"总成交金额:\t{total_turnover:,.2f}")
|
||||
self.output(f"总成交笔数:\t{total_trade_count}")
|
||||
|
||||
self.output(f"日均盈亏:\t{daily_net_pnl:,.2f}")
|
||||
self.output(f"日均手续费:\t{daily_commission:,.2f}")
|
||||
self.output(f"日均滑点:\t{daily_slippage:,.2f}")
|
||||
self.output(f"日均成交金额:\t{daily_turnover:,.2f}")
|
||||
self.output(f"日均成交笔数:\t{daily_trade_count}")
|
||||
|
||||
self.output(f"日均收益率:\t{daily_return:,.2f}%")
|
||||
self.output(f"收益标准差:\t{return_std:,.2f}%")
|
||||
self.output(f"Sharpe Ratio:\t{sharpe_ratio:,.2f}")
|
||||
self.output(f"收益回撤比:\t{return_drawdown_ratio:,.2f}")
|
||||
|
||||
statistics = {
|
||||
"start_date": start_date,
|
||||
"end_date": end_date,
|
||||
"total_days": total_days,
|
||||
"profit_days": profit_days,
|
||||
"loss_days": loss_days,
|
||||
"capital": self.capital,
|
||||
"end_balance": end_balance,
|
||||
"max_drawdown": max_drawdown,
|
||||
"max_ddpercent": max_ddpercent,
|
||||
"max_drawdown_duration": max_drawdown_duration,
|
||||
"total_net_pnl": total_net_pnl,
|
||||
"daily_net_pnl": daily_net_pnl,
|
||||
"total_commission": total_commission,
|
||||
"daily_commission": daily_commission,
|
||||
"total_slippage": total_slippage,
|
||||
"daily_slippage": daily_slippage,
|
||||
"total_turnover": total_turnover,
|
||||
"daily_turnover": daily_turnover,
|
||||
"total_trade_count": total_trade_count,
|
||||
"daily_trade_count": daily_trade_count,
|
||||
"total_return": total_return,
|
||||
"annual_return": annual_return,
|
||||
"daily_return": daily_return,
|
||||
"return_std": return_std,
|
||||
"sharpe_ratio": sharpe_ratio,
|
||||
"return_drawdown_ratio": return_drawdown_ratio,
|
||||
}
|
||||
|
||||
return statistics
|
||||
|
||||
def show_chart(self, df: DataFrame = None):
|
||||
""""""
|
||||
# Check DataFrame input exterior
|
||||
if df is None:
|
||||
df = self.daily_df
|
||||
|
||||
# Check for init DataFrame
|
||||
if df is None:
|
||||
return
|
||||
|
||||
plt.figure(figsize=(10, 16))
|
||||
|
||||
balance_plot = plt.subplot(4, 1, 1)
|
||||
balance_plot.set_title("Balance")
|
||||
df["balance"].plot(legend=True)
|
||||
|
||||
drawdown_plot = plt.subplot(4, 1, 2)
|
||||
drawdown_plot.set_title("Drawdown")
|
||||
drawdown_plot.fill_between(range(len(df)), df["drawdown"].values)
|
||||
|
||||
pnl_plot = plt.subplot(4, 1, 3)
|
||||
pnl_plot.set_title("Daily Pnl")
|
||||
df["net_pnl"].plot(kind="bar", legend=False, grid=False, xticks=[])
|
||||
|
||||
distribution_plot = plt.subplot(4, 1, 4)
|
||||
distribution_plot.set_title("Daily Pnl Distribution")
|
||||
df["net_pnl"].hist(bins=50)
|
||||
|
||||
plt.show()
|
||||
|
||||
def update_daily_close(self, price: float):
|
||||
""""""
|
||||
d = self.datetime.date()
|
||||
|
||||
daily_result = self.daily_results.get(d, None)
|
||||
if daily_result:
|
||||
daily_result.close_price = price
|
||||
else:
|
||||
self.daily_results[d] = DailyResult(d, price)
|
||||
|
||||
def new_bar(self, bar: BarData):
|
||||
""""""
|
||||
self.bar = bar
|
||||
self.datetime = bar.datetime
|
||||
|
||||
self.cross_limit_order()
|
||||
self.cross_stop_order()
|
||||
self.strategy.on_bar(bar)
|
||||
|
||||
self.update_daily_close(bar.close_price)
|
||||
|
||||
def new_tick(self, tick: TickData):
|
||||
""""""
|
||||
self.tick = tick
|
||||
self.datetime = tick.datetime
|
||||
|
||||
self.cross_limit_order()
|
||||
self.cross_stop_order()
|
||||
self.strategy.on_tick(tick)
|
||||
|
||||
self.update_daily_close(tick.last_price)
|
||||
|
||||
def cross_limit_order(self):
|
||||
"""
|
||||
Cross limit order with last bar/tick data.
|
||||
"""
|
||||
if self.mode == BacktestingMode.BAR:
|
||||
long_cross_price = self.bar.low_price
|
||||
short_cross_price = self.bar.high_price
|
||||
long_best_price = self.bar.open_price
|
||||
short_best_price = self.bar.open_price
|
||||
else:
|
||||
long_cross_price = self.tick.ask_price_1
|
||||
short_cross_price = self.tick.bid_price_1
|
||||
long_best_price = long_cross_price
|
||||
short_best_price = short_cross_price
|
||||
|
||||
for order in list(self.active_limit_orders.values()):
|
||||
# Push order update with status "not traded" (pending).
|
||||
if order.status == Status.SUBMITTING:
|
||||
order.status = Status.NOTTRADED
|
||||
self.strategy.on_order(order)
|
||||
|
||||
# Check whether limit orders can be filled.
|
||||
long_cross = (
|
||||
order.direction == Direction.LONG
|
||||
and order.price >= long_cross_price
|
||||
and long_cross_price > 0
|
||||
)
|
||||
|
||||
short_cross = (
|
||||
order.direction == Direction.SHORT
|
||||
and order.price <= short_cross_price
|
||||
and short_cross_price > 0
|
||||
)
|
||||
|
||||
if not long_cross and not short_cross:
|
||||
continue
|
||||
|
||||
# Push order udpate with status "all traded" (filled).
|
||||
order.traded = order.volume
|
||||
order.status = Status.ALLTRADED
|
||||
self.strategy.on_order(order)
|
||||
|
||||
self.active_limit_orders.pop(order.vt_orderid)
|
||||
|
||||
# Push trade update
|
||||
self.trade_count += 1
|
||||
|
||||
if long_cross:
|
||||
trade_price = min(order.price, long_best_price)
|
||||
pos_change = order.volume
|
||||
else:
|
||||
trade_price = max(order.price, short_best_price)
|
||||
pos_change = -order.volume
|
||||
|
||||
trade = TradeData(
|
||||
symbol=order.symbol,
|
||||
exchange=order.exchange,
|
||||
orderid=order.orderid,
|
||||
tradeid=str(self.trade_count),
|
||||
direction=order.direction,
|
||||
offset=order.offset,
|
||||
price=trade_price,
|
||||
volume=order.volume,
|
||||
time=self.datetime.strftime("%H:%M:%S"),
|
||||
gateway_name=self.gateway_name,
|
||||
)
|
||||
trade.datetime = self.datetime
|
||||
|
||||
self.strategy.pos += pos_change
|
||||
self.strategy.on_trade(trade)
|
||||
|
||||
self.trades[trade.vt_tradeid] = trade
|
||||
|
||||
def load_bar(
|
||||
self, spread: str, days: int, interval: Interval, callback: Callable
|
||||
):
|
||||
""""""
|
||||
self.days = days
|
||||
self.callback = callback
|
||||
|
||||
def load_tick(self, spread: str, days: int, callback: Callable):
|
||||
""""""
|
||||
self.days = days
|
||||
self.callback = callback
|
||||
|
||||
def start_algo(
|
||||
self,
|
||||
strategy: SpreadStrategyTemplate,
|
||||
spread_name: str,
|
||||
direction: Direction,
|
||||
offset: Offset,
|
||||
price: float,
|
||||
volume: float,
|
||||
payup: int,
|
||||
interval: int,
|
||||
lock: bool
|
||||
) -> str:
|
||||
""""""
|
||||
pass
|
||||
|
||||
def stop_algo(
|
||||
self,
|
||||
algoid: str
|
||||
):
|
||||
""""""
|
||||
pass
|
||||
|
||||
def send_order(
|
||||
self,
|
||||
strategy: SpreadStrategyTemplate,
|
||||
direction: Direction,
|
||||
offset: Offset,
|
||||
price: float,
|
||||
volume: float,
|
||||
stop: bool,
|
||||
lock: bool
|
||||
):
|
||||
""""""
|
||||
price = round_to(price, self.pricetick)
|
||||
if stop:
|
||||
vt_orderid = self.send_stop_order(direction, offset, price, volume)
|
||||
else:
|
||||
vt_orderid = self.send_limit_order(direction, offset, price, volume)
|
||||
return [vt_orderid]
|
||||
|
||||
def cancel_order(self, strategy: SpreadStrategyTemplate, vt_orderid: str):
|
||||
"""
|
||||
Cancel order by vt_orderid.
|
||||
"""
|
||||
if vt_orderid.startswith(STOPORDER_PREFIX):
|
||||
self.cancel_stop_order(strategy, vt_orderid)
|
||||
else:
|
||||
self.cancel_limit_order(strategy, vt_orderid)
|
||||
|
||||
def write_log(self, msg: str, strategy: SpreadStrategyTemplate = None):
|
||||
"""
|
||||
Write log message.
|
||||
"""
|
||||
msg = f"{self.datetime}\t{msg}"
|
||||
self.logs.append(msg)
|
||||
|
||||
def send_email(self, msg: str, strategy: SpreadStrategyTemplate = None):
|
||||
"""
|
||||
Send email to default receiver.
|
||||
"""
|
||||
pass
|
||||
|
||||
def put_strategy_event(self, strategy: SpreadStrategyTemplate):
|
||||
"""
|
||||
Put an event to update strategy status.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class DailyResult:
|
||||
""""""
|
||||
|
||||
def __init__(self, date: date, close_price: float):
|
||||
""""""
|
||||
self.date = date
|
||||
self.close_price = close_price
|
||||
self.pre_close = 0
|
||||
|
||||
self.trades = []
|
||||
self.trade_count = 0
|
||||
|
||||
self.start_pos = 0
|
||||
self.end_pos = 0
|
||||
|
||||
self.turnover = 0
|
||||
self.commission = 0
|
||||
self.slippage = 0
|
||||
|
||||
self.trading_pnl = 0
|
||||
self.holding_pnl = 0
|
||||
self.total_pnl = 0
|
||||
self.net_pnl = 0
|
||||
|
||||
def add_trade(self, trade: TradeData):
|
||||
""""""
|
||||
self.trades.append(trade)
|
||||
|
||||
def calculate_pnl(
|
||||
self,
|
||||
pre_close: float,
|
||||
start_pos: float,
|
||||
size: int,
|
||||
rate: float,
|
||||
slippage: float,
|
||||
inverse: bool
|
||||
):
|
||||
""""""
|
||||
# If no pre_close provided on the first day,
|
||||
# use value 1 to avoid zero division error
|
||||
if pre_close:
|
||||
self.pre_close = pre_close
|
||||
else:
|
||||
self.pre_close = 1
|
||||
|
||||
# Holding pnl is the pnl from holding position at day start
|
||||
self.start_pos = start_pos
|
||||
self.end_pos = start_pos
|
||||
|
||||
if not inverse: # For normal contract
|
||||
self.holding_pnl = self.start_pos * \
|
||||
(self.close_price - self.pre_close) * size
|
||||
else: # For crypto currency inverse contract
|
||||
self.holding_pnl = self.start_pos * \
|
||||
(1 / self.pre_close - 1 / self.close_price) * size
|
||||
|
||||
# Trading pnl is the pnl from new trade during the day
|
||||
self.trade_count = len(self.trades)
|
||||
|
||||
for trade in self.trades:
|
||||
if trade.direction == Direction.LONG:
|
||||
pos_change = trade.volume
|
||||
else:
|
||||
pos_change = -trade.volume
|
||||
|
||||
self.end_pos += pos_change
|
||||
|
||||
# For normal contract
|
||||
if not inverse:
|
||||
turnover = trade.volume * size * trade.price
|
||||
self.trading_pnl += pos_change * \
|
||||
(self.close_price - trade.price) * size
|
||||
self.slippage += trade.volume * size * slippage
|
||||
# For crypto currency inverse contract
|
||||
else:
|
||||
turnover = trade.volume * size / trade.price
|
||||
self.trading_pnl += pos_change * \
|
||||
(1 / trade.price - 1 / self.close_price) * size
|
||||
self.slippage += trade.volume * size * slippage / (trade.price ** 2)
|
||||
|
||||
self.turnover += turnover
|
||||
self.commission += turnover * rate
|
||||
|
||||
# Net pnl takes account of commission and slippage cost
|
||||
self.total_pnl = self.trading_pnl + self.holding_pnl
|
||||
self.net_pnl = self.total_pnl - self.commission - self.slippage
|
||||
|
||||
|
||||
|
||||
@lru_cache(maxsize=999)
|
||||
def load_bar_data(
|
||||
symbol: str,
|
||||
exchange: Exchange,
|
||||
interval: Interval,
|
||||
start: datetime,
|
||||
end: datetime
|
||||
):
|
||||
""""""
|
||||
return database_manager.load_bar_data(
|
||||
symbol, exchange, interval, start, end
|
||||
)
|
||||
|
||||
|
||||
@lru_cache(maxsize=999)
|
||||
def load_tick_data(
|
||||
symbol: str,
|
||||
exchange: Exchange,
|
||||
start: datetime,
|
||||
end: datetime
|
||||
):
|
||||
""""""
|
||||
return database_manager.load_tick_data(
|
||||
symbol, exchange, start, end
|
||||
)
|
||||
|
@ -347,3 +347,8 @@ def calculate_inverse_volume(
|
||||
if not price:
|
||||
return 0
|
||||
return original_volume * size / price
|
||||
|
||||
|
||||
class BacktestingMode(Enum):
|
||||
BAR = 1
|
||||
TICK = 2
|
||||
|
Loading…
Reference in New Issue
Block a user