[Add] start developing spread backtesting function

This commit is contained in:
vn.py 2019-11-09 14:53:56 +08:00
parent f39859a546
commit ddbf62d47a
2 changed files with 721 additions and 0 deletions

View File

@ -0,0 +1,716 @@
from collections import defaultdict
from datetime import date, datetime, timedelta
from typing import Callable
from functools import lru_cache
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pandas import DataFrame
from vnpy.trader.constant import (Direction, Offset, Exchange,
Interval, Status)
from vnpy.trader.database import database_manager
from vnpy.trader.object import TradeData, BarData, TickData
from vnpy.trader.utility import round_to
from .template import SpreadStrategyTemplate
from .base import SpreadData, BacktestingMode
sns.set_style("whitegrid")
class BacktestingEngine:
""""""
gateway_name = "BACKTESTING"
def __init__(self):
""""""
self.spread: SpreadData = None
self.start = None
self.end = None
self.rate = 0
self.slippage = 0
self.size = 1
self.pricetick = 0
self.capital = 1_000_000
self.mode = BacktestingMode.BAR
self.strategy_class = None
self.strategy = None
self.tick: TickData = None
self.bar: BarData = None
self.datetime = None
self.interval = None
self.days = 0
self.callback = None
self.history_data = []
self.algo_count = 0
self.algos = {}
self.active_algos = {}
self.trade_count = 0
self.trades = {}
self.logs = []
self.daily_results = {}
self.daily_df = None
def output(self, msg):
"""
Output message of backtesting engine.
"""
print(f"{datetime.now()}\t{msg}")
def clear_data(self):
"""
Clear all data of last backtesting.
"""
self.strategy = None
self.tick = None
self.bar = None
self.datetime = None
self.algo_count = 0
self.algos.clear()
self.active_algos.clear()
self.trade_count = 0
self.trades.clear()
self.logs.clear()
self.daily_results.clear()
def set_parameters(
self,
spread: SpreadData,
interval: Interval,
start: datetime,
rate: float,
slippage: float,
size: float,
pricetick: float,
capital: int = 0,
end: datetime = None,
mode: BacktestingMode = BacktestingMode.BAR
):
""""""
self.spread = spread
self.interval = Interval(interval)
self.rate = rate
self.slippage = slippage
self.size = size
self.pricetick = pricetick
self.start = start
self.capital = capital
self.end = end
self.mode = mode
def add_strategy(self, strategy_class: type, setting: dict):
""""""
self.strategy_class = strategy_class
self.strategy = strategy_class(
self,
strategy_class.__name__,
self.spread,
setting
)
def load_data(self):
""""""
self.output("开始加载历史数据")
if not self.end:
self.end = datetime.now()
if self.start >= self.end:
self.output("起始日期必须小于结束日期")
return
if self.mode == BacktestingMode.BAR:
self.history_data = load_bar_data(
self.spread,
self.interval,
self.start,
self.end
)
else:
self.history_datas = load_tick_data(
self.spread,
self.start,
self.end
)
self.output(f"历史数据加载完成,数据量:{len(self.history_data)}")
def run_backtesting(self):
""""""
if self.mode == BacktestingMode.BAR:
func = self.new_bar
else:
func = self.new_tick
self.strategy.on_init()
# Use the first [days] of history data for initializing strategy
day_count = 0
ix = 0
for ix, data in enumerate(self.history_data):
if self.datetime and data.datetime.day != self.datetime.day:
day_count += 1
if day_count >= self.days:
break
self.datetime = data.datetime
self.callback(data)
self.strategy.inited = True
self.output("策略初始化完成")
self.strategy.on_start()
self.strategy.trading = True
self.output("开始回放历史数据")
# Use the rest of history data for running backtesting
for data in self.history_data[ix:]:
func(data)
self.output("历史数据回放结束")
def calculate_result(self):
""""""
self.output("开始计算逐日盯市盈亏")
if not self.trades:
self.output("成交记录为空,无法计算")
return
# Add trade data into daily reuslt.
for trade in self.trades.values():
d = trade.datetime.date()
daily_result = self.daily_results[d]
daily_result.add_trade(trade)
# Calculate daily result by iteration.
pre_close = 0
start_pos = 0
for daily_result in self.daily_results.values():
daily_result.calculate_pnl(
pre_close,
start_pos,
self.size,
self.rate,
self.slippage,
self.inverse
)
pre_close = daily_result.close_price
start_pos = daily_result.end_pos
# Generate dataframe
results = defaultdict(list)
for daily_result in self.daily_results.values():
for key, value in daily_result.__dict__.items():
results[key].append(value)
self.daily_df = DataFrame.from_dict(results).set_index("date")
self.output("逐日盯市盈亏计算完成")
return self.daily_df
def calculate_statistics(self, df: DataFrame = None, output=True):
""""""
self.output("开始计算策略统计指标")
# Check DataFrame input exterior
if df is None:
df = self.daily_df
# Check for init DataFrame
if df is None:
# Set all statistics to 0 if no trade.
start_date = ""
end_date = ""
total_days = 0
profit_days = 0
loss_days = 0
end_balance = 0
max_drawdown = 0
max_ddpercent = 0
max_drawdown_duration = 0
total_net_pnl = 0
daily_net_pnl = 0
total_commission = 0
daily_commission = 0
total_slippage = 0
daily_slippage = 0
total_turnover = 0
daily_turnover = 0
total_trade_count = 0
daily_trade_count = 0
total_return = 0
annual_return = 0
daily_return = 0
return_std = 0
sharpe_ratio = 0
return_drawdown_ratio = 0
else:
# Calculate balance related time series data
df["balance"] = df["net_pnl"].cumsum() + self.capital
df["return"] = np.log(df["balance"] / df["balance"].shift(1)).fillna(0)
df["highlevel"] = (
df["balance"].rolling(
min_periods=1, window=len(df), center=False).max()
)
df["drawdown"] = df["balance"] - df["highlevel"]
df["ddpercent"] = df["drawdown"] / df["highlevel"] * 100
# Calculate statistics value
start_date = df.index[0]
end_date = df.index[-1]
total_days = len(df)
profit_days = len(df[df["net_pnl"] > 0])
loss_days = len(df[df["net_pnl"] < 0])
end_balance = df["balance"].iloc[-1]
max_drawdown = df["drawdown"].min()
max_ddpercent = df["ddpercent"].min()
max_drawdown_end = df["drawdown"].idxmin()
max_drawdown_start = df["balance"][:max_drawdown_end].argmax()
max_drawdown_duration = (max_drawdown_end - max_drawdown_start).days
total_net_pnl = df["net_pnl"].sum()
daily_net_pnl = total_net_pnl / total_days
total_commission = df["commission"].sum()
daily_commission = total_commission / total_days
total_slippage = df["slippage"].sum()
daily_slippage = total_slippage / total_days
total_turnover = df["turnover"].sum()
daily_turnover = total_turnover / total_days
total_trade_count = df["trade_count"].sum()
daily_trade_count = total_trade_count / total_days
total_return = (end_balance / self.capital - 1) * 100
annual_return = total_return / total_days * 240
daily_return = df["return"].mean() * 100
return_std = df["return"].std() * 100
if return_std:
sharpe_ratio = daily_return / return_std * np.sqrt(240)
else:
sharpe_ratio = 0
return_drawdown_ratio = -total_return / max_ddpercent
# Output
if output:
self.output("-" * 30)
self.output(f"首个交易日:\t{start_date}")
self.output(f"最后交易日:\t{end_date}")
self.output(f"总交易日:\t{total_days}")
self.output(f"盈利交易日:\t{profit_days}")
self.output(f"亏损交易日:\t{loss_days}")
self.output(f"起始资金:\t{self.capital:,.2f}")
self.output(f"结束资金:\t{end_balance:,.2f}")
self.output(f"总收益率:\t{total_return:,.2f}%")
self.output(f"年化收益:\t{annual_return:,.2f}%")
self.output(f"最大回撤: \t{max_drawdown:,.2f}")
self.output(f"百分比最大回撤: {max_ddpercent:,.2f}%")
self.output(f"最长回撤天数: \t{max_drawdown_duration}")
self.output(f"总盈亏:\t{total_net_pnl:,.2f}")
self.output(f"总手续费:\t{total_commission:,.2f}")
self.output(f"总滑点:\t{total_slippage:,.2f}")
self.output(f"总成交金额:\t{total_turnover:,.2f}")
self.output(f"总成交笔数:\t{total_trade_count}")
self.output(f"日均盈亏:\t{daily_net_pnl:,.2f}")
self.output(f"日均手续费:\t{daily_commission:,.2f}")
self.output(f"日均滑点:\t{daily_slippage:,.2f}")
self.output(f"日均成交金额:\t{daily_turnover:,.2f}")
self.output(f"日均成交笔数:\t{daily_trade_count}")
self.output(f"日均收益率:\t{daily_return:,.2f}%")
self.output(f"收益标准差:\t{return_std:,.2f}%")
self.output(f"Sharpe Ratio\t{sharpe_ratio:,.2f}")
self.output(f"收益回撤比:\t{return_drawdown_ratio:,.2f}")
statistics = {
"start_date": start_date,
"end_date": end_date,
"total_days": total_days,
"profit_days": profit_days,
"loss_days": loss_days,
"capital": self.capital,
"end_balance": end_balance,
"max_drawdown": max_drawdown,
"max_ddpercent": max_ddpercent,
"max_drawdown_duration": max_drawdown_duration,
"total_net_pnl": total_net_pnl,
"daily_net_pnl": daily_net_pnl,
"total_commission": total_commission,
"daily_commission": daily_commission,
"total_slippage": total_slippage,
"daily_slippage": daily_slippage,
"total_turnover": total_turnover,
"daily_turnover": daily_turnover,
"total_trade_count": total_trade_count,
"daily_trade_count": daily_trade_count,
"total_return": total_return,
"annual_return": annual_return,
"daily_return": daily_return,
"return_std": return_std,
"sharpe_ratio": sharpe_ratio,
"return_drawdown_ratio": return_drawdown_ratio,
}
return statistics
def show_chart(self, df: DataFrame = None):
""""""
# Check DataFrame input exterior
if df is None:
df = self.daily_df
# Check for init DataFrame
if df is None:
return
plt.figure(figsize=(10, 16))
balance_plot = plt.subplot(4, 1, 1)
balance_plot.set_title("Balance")
df["balance"].plot(legend=True)
drawdown_plot = plt.subplot(4, 1, 2)
drawdown_plot.set_title("Drawdown")
drawdown_plot.fill_between(range(len(df)), df["drawdown"].values)
pnl_plot = plt.subplot(4, 1, 3)
pnl_plot.set_title("Daily Pnl")
df["net_pnl"].plot(kind="bar", legend=False, grid=False, xticks=[])
distribution_plot = plt.subplot(4, 1, 4)
distribution_plot.set_title("Daily Pnl Distribution")
df["net_pnl"].hist(bins=50)
plt.show()
def update_daily_close(self, price: float):
""""""
d = self.datetime.date()
daily_result = self.daily_results.get(d, None)
if daily_result:
daily_result.close_price = price
else:
self.daily_results[d] = DailyResult(d, price)
def new_bar(self, bar: BarData):
""""""
self.bar = bar
self.datetime = bar.datetime
self.cross_limit_order()
self.cross_stop_order()
self.strategy.on_bar(bar)
self.update_daily_close(bar.close_price)
def new_tick(self, tick: TickData):
""""""
self.tick = tick
self.datetime = tick.datetime
self.cross_limit_order()
self.cross_stop_order()
self.strategy.on_tick(tick)
self.update_daily_close(tick.last_price)
def cross_limit_order(self):
"""
Cross limit order with last bar/tick data.
"""
if self.mode == BacktestingMode.BAR:
long_cross_price = self.bar.low_price
short_cross_price = self.bar.high_price
long_best_price = self.bar.open_price
short_best_price = self.bar.open_price
else:
long_cross_price = self.tick.ask_price_1
short_cross_price = self.tick.bid_price_1
long_best_price = long_cross_price
short_best_price = short_cross_price
for order in list(self.active_limit_orders.values()):
# Push order update with status "not traded" (pending).
if order.status == Status.SUBMITTING:
order.status = Status.NOTTRADED
self.strategy.on_order(order)
# Check whether limit orders can be filled.
long_cross = (
order.direction == Direction.LONG
and order.price >= long_cross_price
and long_cross_price > 0
)
short_cross = (
order.direction == Direction.SHORT
and order.price <= short_cross_price
and short_cross_price > 0
)
if not long_cross and not short_cross:
continue
# Push order udpate with status "all traded" (filled).
order.traded = order.volume
order.status = Status.ALLTRADED
self.strategy.on_order(order)
self.active_limit_orders.pop(order.vt_orderid)
# Push trade update
self.trade_count += 1
if long_cross:
trade_price = min(order.price, long_best_price)
pos_change = order.volume
else:
trade_price = max(order.price, short_best_price)
pos_change = -order.volume
trade = TradeData(
symbol=order.symbol,
exchange=order.exchange,
orderid=order.orderid,
tradeid=str(self.trade_count),
direction=order.direction,
offset=order.offset,
price=trade_price,
volume=order.volume,
time=self.datetime.strftime("%H:%M:%S"),
gateway_name=self.gateway_name,
)
trade.datetime = self.datetime
self.strategy.pos += pos_change
self.strategy.on_trade(trade)
self.trades[trade.vt_tradeid] = trade
def load_bar(
self, spread: str, days: int, interval: Interval, callback: Callable
):
""""""
self.days = days
self.callback = callback
def load_tick(self, spread: str, days: int, callback: Callable):
""""""
self.days = days
self.callback = callback
def start_algo(
self,
strategy: SpreadStrategyTemplate,
spread_name: str,
direction: Direction,
offset: Offset,
price: float,
volume: float,
payup: int,
interval: int,
lock: bool
) -> str:
""""""
pass
def stop_algo(
self,
algoid: str
):
""""""
pass
def send_order(
self,
strategy: SpreadStrategyTemplate,
direction: Direction,
offset: Offset,
price: float,
volume: float,
stop: bool,
lock: bool
):
""""""
price = round_to(price, self.pricetick)
if stop:
vt_orderid = self.send_stop_order(direction, offset, price, volume)
else:
vt_orderid = self.send_limit_order(direction, offset, price, volume)
return [vt_orderid]
def cancel_order(self, strategy: SpreadStrategyTemplate, vt_orderid: str):
"""
Cancel order by vt_orderid.
"""
if vt_orderid.startswith(STOPORDER_PREFIX):
self.cancel_stop_order(strategy, vt_orderid)
else:
self.cancel_limit_order(strategy, vt_orderid)
def write_log(self, msg: str, strategy: SpreadStrategyTemplate = None):
"""
Write log message.
"""
msg = f"{self.datetime}\t{msg}"
self.logs.append(msg)
def send_email(self, msg: str, strategy: SpreadStrategyTemplate = None):
"""
Send email to default receiver.
"""
pass
def put_strategy_event(self, strategy: SpreadStrategyTemplate):
"""
Put an event to update strategy status.
"""
pass
class DailyResult:
""""""
def __init__(self, date: date, close_price: float):
""""""
self.date = date
self.close_price = close_price
self.pre_close = 0
self.trades = []
self.trade_count = 0
self.start_pos = 0
self.end_pos = 0
self.turnover = 0
self.commission = 0
self.slippage = 0
self.trading_pnl = 0
self.holding_pnl = 0
self.total_pnl = 0
self.net_pnl = 0
def add_trade(self, trade: TradeData):
""""""
self.trades.append(trade)
def calculate_pnl(
self,
pre_close: float,
start_pos: float,
size: int,
rate: float,
slippage: float,
inverse: bool
):
""""""
# If no pre_close provided on the first day,
# use value 1 to avoid zero division error
if pre_close:
self.pre_close = pre_close
else:
self.pre_close = 1
# Holding pnl is the pnl from holding position at day start
self.start_pos = start_pos
self.end_pos = start_pos
if not inverse: # For normal contract
self.holding_pnl = self.start_pos * \
(self.close_price - self.pre_close) * size
else: # For crypto currency inverse contract
self.holding_pnl = self.start_pos * \
(1 / self.pre_close - 1 / self.close_price) * size
# Trading pnl is the pnl from new trade during the day
self.trade_count = len(self.trades)
for trade in self.trades:
if trade.direction == Direction.LONG:
pos_change = trade.volume
else:
pos_change = -trade.volume
self.end_pos += pos_change
# For normal contract
if not inverse:
turnover = trade.volume * size * trade.price
self.trading_pnl += pos_change * \
(self.close_price - trade.price) * size
self.slippage += trade.volume * size * slippage
# For crypto currency inverse contract
else:
turnover = trade.volume * size / trade.price
self.trading_pnl += pos_change * \
(1 / trade.price - 1 / self.close_price) * size
self.slippage += trade.volume * size * slippage / (trade.price ** 2)
self.turnover += turnover
self.commission += turnover * rate
# Net pnl takes account of commission and slippage cost
self.total_pnl = self.trading_pnl + self.holding_pnl
self.net_pnl = self.total_pnl - self.commission - self.slippage
@lru_cache(maxsize=999)
def load_bar_data(
symbol: str,
exchange: Exchange,
interval: Interval,
start: datetime,
end: datetime
):
""""""
return database_manager.load_bar_data(
symbol, exchange, interval, start, end
)
@lru_cache(maxsize=999)
def load_tick_data(
symbol: str,
exchange: Exchange,
start: datetime,
end: datetime
):
""""""
return database_manager.load_tick_data(
symbol, exchange, start, end
)

View File

@ -347,3 +347,8 @@ def calculate_inverse_volume(
if not price:
return 0
return original_volume * size / price
class BacktestingMode(Enum):
BAR = 1
TICK = 2