[Add]新增CRR期权定价模型,针对国内美式商品期权
This commit is contained in:
parent
ebc748259e
commit
c320ce844f
181
vnpy/pricing/crr.py
Normal file
181
vnpy/pricing/crr.py
Normal file
@ -0,0 +1,181 @@
|
||||
# encoding: UTF-8
|
||||
|
||||
'''
|
||||
Cox-Ross-Rubinstein二叉树期权定价模型,主要用于标的物为期货的美式期权的定价
|
||||
|
||||
变量说明
|
||||
f:标的物期货价格
|
||||
k:行权价
|
||||
r:无风险利率
|
||||
t:剩余到期时间(年)
|
||||
v:隐含波动率
|
||||
cp:期权类型,+1/-1对应call/put
|
||||
n: 二叉树高度
|
||||
price:期权价格
|
||||
|
||||
出于开发演示的目的,本文件中的希腊值计算基于简单数值差分法,
|
||||
运算效率一般,实盘中建议使用更高速的算法。
|
||||
|
||||
本文件中的希腊值计算结果没有采用传统的模型价格数值,而是采用
|
||||
了实盘交易中更为实用的百分比变动数值,具体定义如下
|
||||
delta:当f变动1%时,price的变动
|
||||
gamma:当f变动1%时,delta的变动
|
||||
theta:当t变动1天时,price的变动(国内交易日每年240天)
|
||||
vega:当v涨跌1个点时,price的变动(如从16%涨到17%)
|
||||
'''
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import numpy as np
|
||||
from math import (isnan, exp, sqrt, pow)
|
||||
|
||||
|
||||
# 计算希腊值和隐含波动率时用的参数
|
||||
STEP_CHANGE = 0.001
|
||||
STEP_UP = 1 + STEP_CHANGE
|
||||
STEP_DOWN = 1 - STEP_CHANGE
|
||||
STEP_DIFF = STEP_CHANGE * 2
|
||||
|
||||
DX_TARGET = 0.00001
|
||||
|
||||
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def generateTree(f, k, r, t, v, cp, n):
|
||||
"""生成二叉树"""
|
||||
dt = t / n
|
||||
u = exp(v * sqrt(dt))
|
||||
d = 1 / u
|
||||
a = exp(r * dt)
|
||||
uTree = np.zeros((n+1,n+1))
|
||||
oTree = np.zeros((n+1,n+1))
|
||||
|
||||
# 计算风险平价概率
|
||||
p = (a - d) / (u - d)
|
||||
p1 = p / a
|
||||
p2 = (1 - p) / a
|
||||
|
||||
# 计算标的树
|
||||
uTree[0, 0] = f
|
||||
|
||||
for i in range(1, n+1):
|
||||
uTree[0, i] = uTree[0, i-1] * u
|
||||
for j in range(1, i+1):
|
||||
uTree[j, i] = uTree[j-1, i-1] * d
|
||||
|
||||
# 计算期权树
|
||||
for j in range(n+1):
|
||||
oTree[j, n] = max(0, cp * (uTree[j, n]-k))
|
||||
|
||||
for i in range(n-1,-1,-1):
|
||||
for j in range(i+1):
|
||||
oTree[j, i] = max((p1 * oTree[j, i+1] + p2 * oTree[j+1, i+1]), # 美式期权存续价值
|
||||
cp * (uTree[j, i] - k)) # 美式期权行权价值
|
||||
|
||||
# 返回期权树和标的物树结果
|
||||
return oTree, uTree
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def calculatePrice(f, k, r, t, v, cp, n=15):
|
||||
"""计算期权价格"""
|
||||
oTree, uTree = calculatePrice(f, k, r, t, v, cp)
|
||||
return oTree[0, 0]
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def calculateDelta(f, k, r, t, v, cp, n=15):
|
||||
"""计算Delta值"""
|
||||
price1 = calculatePrice(f*STEP_UP, k, r, t, v, cp, n)
|
||||
price2 = calculatePrice(f*STEP_DOWN, k, r, t, v, cp, n)
|
||||
delta = (price1 - price2) / (f * STEP_DIFF) * (f * 0.01)
|
||||
return delta
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def calculateGamma(f, k, r, t, v, cp, n=15):
|
||||
"""计算Gamma值"""
|
||||
delta1 = calculateDelta(f*STEP_UP, k, r, t, v, cp, n)
|
||||
delta2 = calculateDelta(f*STEP_DOWN, k, r, t, v, cp, n)
|
||||
gamma = (delta1 - delta2) / (f * STEP_DIFF) * pow(f, 2) * 0.0001
|
||||
return gamma
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def calculateTheta(f, k, r, t, v, cp, n=15):
|
||||
"""计算Theta值"""
|
||||
price1 = calculatePrice(f, k, r, t*STEP_UP, v, cp, n)
|
||||
price2 = calculatePrice(f, k, r, t*STEP_DOWN, v, cp, n)
|
||||
theta = -(price1 - price2) / (t * STEP_DIFF * 240)
|
||||
return theta
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def calculateVega(f, k, r, t, v, cp, n=15):
|
||||
"""计算Vega值"""
|
||||
vega = calculateOriginalVega(f, k, r, t, v, cp, n) / 100
|
||||
return vega
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def calculateOriginalVega(f, k, r, t, v, cp, n=15):
|
||||
"""计算原始vega值"""
|
||||
price1 = calculatePrice(f, k, r, t, v*STEP_UP, cp, n)
|
||||
price2 = calculatePrice(f, k, r, t, v*STEP_DOWN, cp, n)
|
||||
vega = (price1 - price2) / (v * STEP_DIFF)
|
||||
return vega
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def calculateGreeks(f, k, r, t, v, cp, n=15):
|
||||
"""计算期权的价格和希腊值"""
|
||||
price = calculatePrice(f, k, r, t, v, cp, n)
|
||||
delta = calculateDelta(f, k, r, t, v, cp, n)
|
||||
gamma = calculateGamma(f, k, r, t, v, cp, n)
|
||||
theta = calculateTheta(f, k, r, t, v, cp, n)
|
||||
vega = calculateVega(f, k, r, t, v, cp, n)
|
||||
return price, delta, gamma, theta, vega
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def calculateImpv(price, f, k, r, t, cp, n=15):
|
||||
"""计算隐含波动率"""
|
||||
# 检查期权价格必须为正数
|
||||
if price <= 0:
|
||||
return 0
|
||||
|
||||
# 检查期权价格是否满足最小价值(即到期行权价值)
|
||||
meet = False
|
||||
|
||||
if cp == 1 and (price > (f - k) * exp(-r * t)):
|
||||
meet = True
|
||||
elif cp == -1 and (price > k * exp(-r * t) - f):
|
||||
meet = True
|
||||
|
||||
# 若不满足最小价值,则直接返回0
|
||||
if not meet:
|
||||
return 0
|
||||
|
||||
# 采用Newton Raphson方法计算隐含波动率
|
||||
v = 0.3 # 初始波动率猜测
|
||||
|
||||
for i in range(50):
|
||||
# 计算当前猜测波动率对应的期权价格和vega值
|
||||
p = calculatePrice(f, k, r, t, v, cp, n)
|
||||
|
||||
vega = calculateOriginalVega(f, k, r, t, v, cp, n)
|
||||
|
||||
# 如果vega过小接近0,则直接返回
|
||||
if not vega:
|
||||
break
|
||||
|
||||
# 计算误差
|
||||
dx = (price - p) / vega
|
||||
|
||||
# 检查误差是否满足要求,若满足则跳出循环
|
||||
if abs(dx) < DX_TARGET:
|
||||
break
|
||||
|
||||
# 计算新一轮猜测的波动率
|
||||
v += dx
|
||||
|
||||
# 检查波动率计算结果非负
|
||||
if v <= 0:
|
||||
return 0
|
||||
|
||||
# 保留4位小数
|
||||
v = round(v, 4)
|
||||
|
||||
return v
|
Loading…
Reference in New Issue
Block a user