1. 增加CTA模块的回测参数优化功能

2. 修复CTP接口中持仓价格的bug
3. 量衍更新vnokcoin的比特币期货合约交易功能
This commit is contained in:
chenxy123 2016-07-01 23:07:41 +08:00
parent eff070ca2a
commit b41b44d4a2
6 changed files with 468 additions and 90 deletions

36
vn.okcoin/README.md Normal file
View File

@ -0,0 +1,36 @@
# vn.okcoin
贡献者:量衍投资
### 简介
OkCoin的比特币交易接口基于Websocket API开发实现了以下功能
1. 发送、撤销委托
2. 查询委托、持仓、资金、成交历史
3. 实时行情、成交、资金更新的推送
### 特点
相比较于[OkCoin官方](http://github.com/OKCoin/websocket/tree/master/python)给出的Python API实现vn.okcoin的一些特点
1. 同时支持OkCoin的中国站和国际站交易根据用户连接的站点会在内部自动切换结算货币CNY、USD
2. 采用面向对象的接口设计模式接近国内CTP接口的风格并对主动函数的调用参数做了大幅简化
3. 数据解包和签名生成两个热点函数使用了更加高效的实现方式
### 参数命名
函数的参数命名针对金融领域用户的习惯做了一些修改,具体对应如下:
* expiry原生命名的contract_type
* order: 原生命名的match_price
* leverage原生命名的lever_rate
* page原生命名的current_page
* length原生命名的page_length
### API版本
日期2016-06-29
链接:[http://www.okcoin.com/about/ws_getStarted.do](http://www.okcoin.com/about/ws_getStarted.do)

47
vn.okcoin/test.py Normal file
View File

@ -0,0 +1,47 @@
# encoding: UTF-8
from vnokcoin import *
# 在OkCoin网站申请这两个Key分别对应用户名和密码
apiKey = ''
secretKey = ''
# 创建API对象
api = OkCoinApi()
# 连接服务器并等待1秒
api.connect(OKCOIN_USD, apiKey, secretKey, True)
sleep(1)
# 测试现货行情API
api.subscribeSpotTicker(SYMBOL_BTC)
#api.subscribeSpotTradeData(SYMBOL_BTC)
#api.subscribeSpotDepth(SYMBOL_BTC, DEPTH_20)
#api.subscribeSpotKline(SYMBOL_BTC, INTERVAL_1M)
# 测试现货交易API
#api.subscribeSpotTrades()
#api.subscribeSpotUserInfo()
#api.spotUserInfo()
#api.spotTrade(symbol, type_, price, amount)
#api.spotCancelOrder(symbol, orderid)
#api.spotOrderInfo(symbol, orderid)
# 测试期货行情API
#api.subscribeFutureTicker(SYMBOL_BTC, FUTURE_EXPIRY_THIS_WEEK)
#api.subscribeFutureTradeData(SYMBOL_BTC, FUTURE_EXPIRY_THIS_WEEK)
#api.subscribeFutureDepth(SYMBOL_BTC, FUTURE_EXPIRY_THIS_WEEK, DEPTH_20)
#api.subscribeFutureKline(SYMBOL_BTC, FUTURE_EXPIRY_THIS_WEEK, INTERVAL_1M)
#api.subscribeFutureIndex(SYMBOL_BTC)
# 测试期货交易API
#api.subscribeFutureTrades()
#api.subscribeFutureUserInfo()
#api.subscribeFuturePositions()
#api.futureUserInfo()
#api.futureTrade(symbol, expiry, type_, price, amount, order, leverage)
#api.futureCancelOrder(symbol, expiry, orderid)
#api.futureOrderInfo(symbol, expiry, orderid, status, page, length)
raw_input()

View File

@ -49,6 +49,32 @@ TYPE_SELL = 'sell'
TYPE_BUY_MARKET = 'buy_market'
TYPE_SELL_MARKET = 'sell_market'
# 期货合约到期类型
FUTURE_EXPIRY_THIS_WEEK = 'this_week'
FUTURE_EXPIRY_NEXT_WEEK = 'next_week'
FUTURE_EXPIRY_QUARTER = 'quarter'
# 期货委托类型
FUTURE_TYPE_LONG = 1
FUTURE_TYPE_SHORT = 2
FUTURE_TYPE_SELL = 3
FUTURE_TYPE_COVER = 4
# 期货是否用现价
FUTURE_ORDER_MARKET = 1
FUTURE_ORDER_LIMIT = 0
# 期货杠杆
FUTURE_LEVERAGE_10 = 10
FUTURE_LEVERAGE_20 = 20
# 委托状态
ORDER_STATUS_NOTTRADED = 0
ORDER_STATUS_PARTTRADED = 1
ORDER_STATUS_ALLTRADED = 2
ORDER_STATUS_CANCELLED = -1
ORDER_STATUS_CANCELLING = 4
########################################################################
class OkCoinApi(object):
@ -65,6 +91,10 @@ class OkCoinApi(object):
self.ws = None # websocket应用对象
self.thread = None # 工作线程
#######################
## 通用函数
#######################
#----------------------------------------------------------------------
def readData(self, evt):
"""解压缩推送收到的数据"""
@ -135,6 +165,10 @@ class OkCoinApi(object):
self.thread = Thread(target=self.ws.run_forever)
self.thread.start()
#######################
## 现货相关
#######################
#----------------------------------------------------------------------
def sendMarketDataRequest(self, channel):
"""发送行情请求"""
@ -242,32 +276,106 @@ class OkCoinApi(object):
self.sendTradingRequest(channel, {})
#######################
## 期货相关
#######################
if __name__ == "__main__":
# 在OkCoin网站申请这两个Key分别对应用户名和密码
apiKey = ''
secretKey = ''
#----------------------------------------------------------------------
def subscribeFutureTicker(self, symbol, expiry):
"""订阅期货普通报价"""
self.sendMarketDataRequest('ok_sub_future%s_%s_ticker_%s' %(self.currency, symbol, expiry))
# 创建API对象
api = OkCoinApi()
#----------------------------------------------------------------------
def subscribeFutureDepth(self, symbol, expiry, depth):
"""订阅期货深度报价"""
self.sendMarketDataRequest('ok_sub_future%s_%s_depth_%s_%s' %(self.currency, symbol,
expiry, depth))
# 连接服务器并等待1秒
api.connect(OKCOIN_CNY, apiKey, secretKey, True)
#----------------------------------------------------------------------
def subscribeFutureTradeData(self, symbol, expiry):
"""订阅期货成交记录"""
self.sendMarketDataRequest('ok_sub_future%s_%s_trade_%s' %(self.currency, symbol, expiry))
sleep(1)
#----------------------------------------------------------------------
def subscribeFutureKline(self, symbol, expiry, interval):
"""订阅期货K线"""
self.sendMarketDataRequest('ok_sub_future%s_%s_kline_%s_%s' %(self.currency, symbol,
expiry, interval))
# 测试现货行情API
#api.subscribeSpotTicker(SYMBOL_BTC)
#api.subscribeSpotTradeData(SYMBOL_BTC)
#api.subscribeSpotDepth(SYMBOL_BTC, DEPTH_20)
#api.subscribeSpotKline(SYMBOL_BTC, INTERVAL_1M)
#----------------------------------------------------------------------
def subscribeFutureIndex(self, symbol):
"""订阅期货指数"""
self.sendMarketDataRequest('ok_sub_future%s_%s_index' %(self.currency, symbol))
#----------------------------------------------------------------------
def futureTrade(self, symbol, expiry, type_, price, amount, order, leverage):
"""期货委托"""
params = {}
params['symbol'] = str(symbol+self.currency)
params['type'] = str(type_)
params['price'] = str(price)
params['amount'] = str(amount)
params['contract_type'] = str(expiry)
params['match_price'] = str(order)
params['lever_rate'] = str(leverage)
channel = 'ok_future%s_trade' %(self.currency)
self.sendTradingRequest(channel, params)
#----------------------------------------------------------------------
def futureCancelOrder(self, symbol, expiry, orderid):
"""期货撤单"""
params = {}
params['symbol'] = str(symbol+self.currency)
params['order_id'] = str(orderid)
params['contract_type'] = str(expiry)
channel = 'ok_future%s_cancel_order' %(self.currency)
self.sendTradingRequest(channel, params)
#----------------------------------------------------------------------
def futureUserInfo(self):
"""查询期货账户"""
channel = 'ok_future%s_userinfo' %(self.currency)
self.sendTradingRequest(channel, {})
#----------------------------------------------------------------------
def futureOrderInfo(self, symbol, expiry, orderid, status, page, length):
"""查询期货委托信息"""
params = {}
params['symbol'] = str(symbol+self.currency)
params['order_id'] = str(orderid)
params['contract_type'] = expiry
params['status'] = status
params['current_page'] = page
params['page_length'] = length
channel = 'ok_future%s_orderinfo'
self.sendTradingRequest(channel, params)
#----------------------------------------------------------------------
def subscribeFutureTrades(self):
"""订阅期货成交信息"""
channel = 'ok_sub_future%s_trades' %(self.currency)
self.sendTradingRequest(channel, {})
#----------------------------------------------------------------------
def subscribeFutureUserInfo(self):
"""订阅期货账户信息"""
channel = 'ok_sub_future%s_userinfo' %(self.currency)
self.sendTradingRequest(channel, {})
#----------------------------------------------------------------------
def subscribeFuturePositions(self):
"""订阅期货持仓信息"""
channel = 'ok_sub_future%s_positions' %(self.currency)
self.sendTradingRequest(channel, {})
# 测试现货交易API
#api.subscribeSpotTrades()
#api.subscribeSpotUserInfo()
api.spotUserInfo()
#api.spotTrade(symbol, type_, price, amount)
#api.spotCancelOrder(symbol, orderid)
#api.spotOrderInfo(symbol, orderid)
raw_input()

View File

@ -7,6 +7,7 @@
from datetime import datetime, timedelta
from collections import OrderedDict
from itertools import product
import pymongo
from ctaBase import *
@ -55,6 +56,9 @@ class BacktestingEngine(object):
self.initData = [] # 初始化用的数据
#self.backtestingData = [] # 回测用的数据
self.dbName = '' # 回测数据库名
self.symbol = '' # 回测集合名
self.dataStartDate = None # 回测数据开始日期datetime对象
self.dataEndDate = None # 回测数据结束日期datetime对象
self.strategyStartDate = None # 策略启动日期即前面的数据用于初始化datetime对象
@ -93,12 +97,18 @@ class BacktestingEngine(object):
self.mode = mode
#----------------------------------------------------------------------
def loadHistoryData(self, dbName, symbol):
def setDatabase(self, dbName, symbol):
"""设置历史数据所用的数据库"""
self.dbName = dbName
self.symbol = symbol
#----------------------------------------------------------------------
def loadHistoryData(self):
"""载入历史数据"""
host, port = loadMongoSetting()
self.dbClient = pymongo.MongoClient(host, port)
collection = self.dbClient[dbName][symbol]
collection = self.dbClient[self.dbName][self.symbol]
self.output(u'开始载入数据')
@ -134,6 +144,9 @@ class BacktestingEngine(object):
#----------------------------------------------------------------------
def runBacktesting(self):
"""运行回测"""
# 载入历史数据
self.loadHistoryData()
# 首先根据回测模式,确认要使用的数据类
if self.mode == self.BAR_MODE:
dataClass = CtaBarData
@ -431,23 +444,20 @@ class BacktestingEngine(object):
#----------------------------------------------------------------------
def output(self, content):
"""输出内容"""
print content
print str(datetime.now()) + "\t" + content
#----------------------------------------------------------------------
def showBacktestingResult(self):
def calculateBacktestingResult(self):
"""
显示回测结果
计算回测结果
"""
self.output(u'显示回测结果')
self.output(u'计算回测结果')
# 首先基于回测后的成交记录,计算每笔交易的盈亏
pnlDict = OrderedDict() # 每笔盈亏的记录
resultDict = OrderedDict() # 交易结果记录
longTrade = [] # 未平仓的多头交易
shortTrade = [] # 未平仓的空头交易
# 计算滑点,一个来回包括两次
totalSlippage = self.slippage * 2
for trade in self.tradeDict.values():
# 多头交易
if trade.direction == DIRECTION_LONG:
@ -457,12 +467,10 @@ class BacktestingEngine(object):
# 当前多头交易为平空
else:
entryTrade = shortTrade.pop(0)
# 计算比例佣金
commission = (trade.price+entryTrade.price) * self.rate
# 计算盈亏
pnl = ((trade.price - entryTrade.price)*(-1) - totalSlippage - commission) \
* trade.volume * self.size
pnlDict[trade.dt] = pnl
result = TradingResult(entryTrade.price, trade.price, -trade.volume,
self.rate, self.slippage, self.size)
resultDict[trade.dt] = result
# 空头交易
else:
# 如果尚无多头交易
@ -471,56 +479,93 @@ class BacktestingEngine(object):
# 当前空头交易为平多
else:
entryTrade = longTrade.pop(0)
# 计算比例佣金
commission = (trade.price+entryTrade.price) * self.rate
# 计算盈亏
pnl = ((trade.price - entryTrade.price) - totalSlippage - commission) \
* trade.volume * self.size
pnlDict[trade.dt] = pnl
result = TradingResult(entryTrade.price, trade.price, trade.volume,
self.rate, self.slippage, self.size)
resultDict[trade.dt] = result
# 检查是否有交易
if not resultDict:
self.output(u'无交易结果')
return {}
# 然后基于每笔交易的结果,我们可以计算具体的盈亏曲线和最大回撤等
timeList = pnlDict.keys()
pnlList = pnlDict.values()
capital = 0 # 资金
maxCapital = 0 # 资金最高净值
drawdown = 0 # 回撤
capital = 0
maxCapital = 0
drawdown = 0
totalResult = 0 # 总成交数量
totalTurnover = 0 # 总成交金额(合约面值)
totalCommission = 0 # 总手续费
totalSlippage = 0 # 总滑点
timeList = [] # 时间序列
pnlList = [] # 每笔盈亏序列
capitalList = [] # 盈亏汇总的时间序列
maxCapitalList = [] # 最高盈利的时间序列
drawdownList = [] # 回撤的时间序列
for pnl in pnlList:
capital += pnl
for time, result in resultDict.items():
capital += result.pnl
maxCapital = max(capital, maxCapital)
drawdown = capital - maxCapital
pnlList.append(result.pnl)
timeList.append(time)
capitalList.append(capital)
maxCapitalList.append(maxCapital)
drawdownList.append(drawdown)
totalResult += 1
totalTurnover += result.turnover
totalCommission += result.commission
totalSlippage += result.slippage
# 返回回测结果
d = {}
d['capital'] = capital
d['maxCapital'] = maxCapital
d['drawdown'] = drawdown
d['totalResult'] = totalResult
d['totalTurnover'] = totalTurnover
d['totalCommission'] = totalCommission
d['totalSlippage'] = totalSlippage
d['timeList'] = timeList
d['pnlList'] = pnlList
d['capitalList'] = capitalList
d['drawdownList'] = drawdownList
return d
#----------------------------------------------------------------------
def showBacktestingResult(self):
"""显示回测结果"""
d = self.calculateBacktestingResult()
# 输出
self.output('-' * 50)
self.output(u'第一笔交易时间:%s' % timeList[0])
self.output(u'最后一笔交易时间:%s' % timeList[-1])
self.output(u'总交易次数:%s' % len(pnlList))
self.output(u'总盈亏:%s' % capitalList[-1])
self.output(u'最大回撤: %s' % min(drawdownList))
self.output('-' * 30)
self.output(u'第一笔交易:\t%s' % d['timeList'][0])
self.output(u'最后一笔交易:\t%s' % d['timeList'][-1])
self.output(u'总交易次数:\t%s' % formatNumber(d['totalResult']))
self.output(u'总盈亏:\t%s' % formatNumber(d['capital']))
self.output(u'最大回撤: \t%s' % formatNumber(min(d['drawdownList'])))
self.output(u'平均每笔盈利:\t%s' %formatNumber(d['capital']/d['totalResult']))
self.output(u'平均每笔滑点:\t%s' %formatNumber(d['totalSlippage']/d['totalResult']))
self.output(u'平均每笔佣金:\t%s' %formatNumber(d['totalCommission']/d['totalResult']))
# 绘图
import matplotlib.pyplot as plt
pCapital = plt.subplot(3, 1, 1)
pCapital.set_ylabel("capital")
pCapital.plot(capitalList)
pCapital.plot(d['capitalList'])
pDD = plt.subplot(3, 1, 2)
pDD.set_ylabel("DD")
pDD.bar(range(len(drawdownList)), drawdownList)
pDD.bar(range(len(d['drawdownList'])), d['drawdownList'])
pPnl = plt.subplot(3, 1, 3)
pPnl.set_ylabel("pnl")
pPnl.hist(pnlList, bins=20)
pPnl.hist(d['pnlList'], bins=50)
plt.show()
@ -531,7 +576,7 @@ class BacktestingEngine(object):
#----------------------------------------------------------------------
def setSlippage(self, slippage):
"""设置滑点"""
"""设置滑点点数"""
self.slippage = slippage
#----------------------------------------------------------------------
@ -544,6 +589,137 @@ class BacktestingEngine(object):
"""设置佣金比例"""
self.rate = rate
#----------------------------------------------------------------------
def runOptimization(self, strategyClass, optimizationSetting):
"""优化参数"""
# 获取优化设置
settingList = optimizationSetting.generateSetting()
targetName = optimizationSetting.optimizeTarget
# 检查参数设置问题
if not settingList or not targetName:
self.output(u'优化设置有问题,请检查')
# 遍历优化
resultList = []
for setting in settingList:
self.clearBacktestingResult()
self.output('-' * 30)
self.output('setting: %s' %str(setting))
self.initStrategy(strategyClass, setting)
self.runBacktesting()
d = self.calculateBacktestingResult()
try:
targetValue = d[targetName]
except KeyError:
targetValue = 0
resultList.append(([str(setting)], targetValue))
# 显示结果
resultList.sort(reverse=True, key=lambda result:result[1])
self.output('-' * 30)
self.output(u'优化结果:')
for result in resultList:
self.output(u'%s: %s' %(result[0], result[1]))
#----------------------------------------------------------------------
def clearBacktestingResult(self):
"""清空之前回测的结果"""
# 清空限价单相关
self.limitOrderCount = 0
self.limitOrderDict.clear()
self.workingLimitOrderDict.clear()
# 清空停止单相关
self.stopOrderCount = 0
self.stopOrderDict.clear()
self.workingStopOrderDict.clear()
# 清空成交相关
self.tradeCount = 0
self.tradeDict.clear()
########################################################################
class TradingResult(object):
"""每笔交易的结果"""
#----------------------------------------------------------------------
def __init__(self, entry, exit, volume, rate, slippage, size):
"""Constructor"""
self.entry = entry # 开仓价格
self.exit = exit # 平仓价格
self.volume = volume # 交易数量(+/-代表方向)
self.turnover = (self.entry+self.exit)*size # 成交金额
self.commission = self.turnover*rate # 手续费成本
self.slippage = slippage*2*size # 滑点成本
self.pnl = ((self.exit - self.entry) * volume * size
- self.commission - self.slippage) # 净盈亏
########################################################################
class OptimizationSetting(object):
"""优化设置"""
#----------------------------------------------------------------------
def __init__(self):
"""Constructor"""
self.paramDict = OrderedDict()
self.optimizeTarget = '' # 优化目标字段
#----------------------------------------------------------------------
def addParameter(self, name, start, end, step):
"""增加优化参数"""
if end <= start:
print u'参数起始点必须小于终止点'
return
if step <= 0:
print u'参数布进必须大于0'
return
l = []
param = start
while param <= end:
l.append(param)
param += step
self.paramDict[name] = l
#----------------------------------------------------------------------
def generateSetting(self):
"""生成优化参数组合"""
# 参数名的列表
nameList = self.paramDict.keys()
paramList = self.paramDict.values()
# 使用迭代工具生产参数对组合
productList = list(product(*paramList))
# 把参数对组合打包到一个个字典组成的列表中
settingList = []
for p in productList:
d = dict(zip(nameList, p))
settingList.append(d)
return settingList
#----------------------------------------------------------------------
def setOptimizeTarget(self, target):
"""设置优化目标字段"""
self.optimizeTarget = target
#----------------------------------------------------------------------
def formatNumber(n):
"""格式化数字到字符串"""
n = round(n, 2) # 保留两位小数
return format(n, ',') # 加上千分符
if __name__ == '__main__':
@ -562,7 +738,7 @@ if __name__ == '__main__':
engine.setStartDate('20110101')
# 载入历史数据到引擎中
engine.loadHistoryData(MINUTE_DB_NAME, 'IF0000')
engine.setDatabase(MINUTE_DB_NAME, 'IF0000')
# 设置产品相关参数
engine.setSlippage(0.2) # 股指1跳

View File

@ -251,21 +251,29 @@ if __name__ == '__main__':
# 设置回测用的数据起始日期
engine.setStartDate('20120101')
# 载入历史数据到引擎中
engine.loadHistoryData(MINUTE_DB_NAME, 'IF0000')
# 设置产品相关参数
engine.setSlippage(0.2) # 股指1跳
engine.setRate(0.3/10000) # 万0.3
engine.setSize(300) # 股指合约大小
# 在引擎中创建策略对象
engine.initStrategy(AtrRsiStrategy, {})
# 设置使用的历史数据库
engine.setDatabase(MINUTE_DB_NAME, 'IF0000')
# 开始跑回测
engine.runBacktesting()
## 在引擎中创建策略对象
#d = {'atrLength': 11}
#engine.initStrategy(AtrRsiStrategy, d)
# 显示回测结果
engine.showBacktestingResult()
## 开始跑回测
#engine.runBacktesting()
## 显示回测结果
#engine.showBacktestingResult()
# 跑优化
setting = OptimizationSetting() # 新建一个优化任务设置对象
setting.setOptimizeTarget('capital') # 设置优化排序的目标是策略净盈利
setting.addParameter('atrLength', 11, 12, 1) # 增加第一个优化参数atrLength起始11结束12步进1
setting.addParameter('atrMa', 20, 30, 5) # 增加第二个优化参数atrMa起始20结束30步进1
engine.runOptimization(AtrRsiStrategy, setting) # 运行优化函数,自动输出结果

View File

@ -437,6 +437,7 @@ class CtpTdApi(TdApi):
self.posBufferDict = {} # 缓存持仓数据的字典
self.symbolExchangeDict = {} # 保存合约代码和交易所的印射关系
self.symbolSizeDict = {} # 保存合约代码和合约大小的印射关系
#----------------------------------------------------------------------
def onFrontConnected(self):
@ -637,10 +638,11 @@ class CtpTdApi(TdApi):
# 更新持仓缓存并获取VT系统中持仓对象的返回值
exchange = self.symbolExchangeDict.get(data['InstrumentID'], EXCHANGE_UNKNOWN)
size = self.symbolSizeDict.get(data['InstrumentID'], 1)
if exchange == EXCHANGE_SHFE:
pos = posBuffer.updateShfeBuffer(data)
pos = posBuffer.updateShfeBuffer(data, size)
else:
pos = posBuffer.updateBuffer(data)
pos = posBuffer.updateBuffer(data, size)
self.gateway.onPosition(pos)
#----------------------------------------------------------------------
@ -735,6 +737,7 @@ class CtpTdApi(TdApi):
# 缓存代码和交易所的印射关系
self.symbolExchangeDict[contract.symbol] = contract.exchange
self.symbolSizeDict[contract.symbol] = contract.size
# 推送
self.gateway.onContract(contract)
@ -1318,7 +1321,7 @@ class PositionBuffer(object):
self.pos = pos
#----------------------------------------------------------------------
def updateShfeBuffer(self, data):
def updateShfeBuffer(self, data, size):
"""更新上期所缓存,返回更新后的持仓数据"""
# 昨仓和今仓的数据更新是分在两条记录里的,因此需要判断检查该条记录对应仓位
# 因为今仓字段TodayPosition可能变为0被全部平仓因此分辨今昨仓需要用YdPosition字段
@ -1336,7 +1339,7 @@ class PositionBuffer(object):
# 如果手头还有持仓,则通过加权平均方式计算持仓均价
if self.todayPosition or self.ydPosition:
self.pos.price = ((self.todayPositionCost + self.ydPositionCost)/
(self.todayPosition + self.ydPosition))
((self.todayPosition + self.ydPosition) * size))
# 否则价格为0
else:
self.pos.price = 0
@ -1344,14 +1347,14 @@ class PositionBuffer(object):
return copy(self.pos)
#----------------------------------------------------------------------
def updateBuffer(self, data):
def updateBuffer(self, data, size):
"""更新其他交易所的缓存,返回更新后的持仓数据"""
# 其他交易所并不区分今昨因此只关心总仓位昨仓设为0
self.pos.position = data['Position']
self.pos.ydPosition = 0
if data['Position']:
self.pos.price = data['PositionCost'] / data['Position']
self.pos.price = data['PositionCost'] / (data['Position'] * size)
else:
self.pos.price = 0