[update] 下载股票1m和日线数据,同时更新5/15/30分钟
This commit is contained in:
parent
917562f81f
commit
ab8b9bef24
@ -1,6 +1,6 @@
|
||||
# flake8: noqa
|
||||
"""
|
||||
下载通达信股票合约1分钟bar => vnpy项目目录/bar_data/
|
||||
下载通达信股票合约1分钟&日线bar => vnpy项目目录/bar_data/
|
||||
上海股票 => SSE子目录
|
||||
深圳股票 => SZSE子目录
|
||||
"""
|
||||
@ -18,8 +18,10 @@ if vnpy_root not in sys.path:
|
||||
os.environ["VNPY_TESTING"] = "1"
|
||||
|
||||
from vnpy.data.tdx.tdx_stock_data import *
|
||||
from vnpy.data.common import resample_bars_file
|
||||
from vnpy.trader.utility import load_json
|
||||
from vnpy.trader.utility import get_csv_last_dt
|
||||
from vnpy.trader.util_wechat import send_wx_msg
|
||||
|
||||
# 保存的1分钟指数 bar目录
|
||||
bar_data_folder = os.path.abspath(os.path.join(vnpy_root, 'bar_data'))
|
||||
@ -30,83 +32,100 @@ start_date = '20160101'
|
||||
# 创建API对象
|
||||
api_01 = TdxStockData()
|
||||
|
||||
# 更新本地合约缓存信息
|
||||
# 额外需要数据下载的基金列表
|
||||
stock_list = load_json('stock_list.json')
|
||||
|
||||
symbol_dict = api_01.symbol_dict
|
||||
|
||||
# 逐一合约下载并更新
|
||||
for stock_code in stock_list:
|
||||
market_id = get_tdx_market_code(stock_code)
|
||||
if market_id == 0:
|
||||
exchange_name = '深交所'
|
||||
exchange = Exchange.SZSE
|
||||
else:
|
||||
exchange_name = '上交所'
|
||||
exchange = Exchange.SSE
|
||||
# 下载所有的股票数据
|
||||
num_stocks = 0
|
||||
for period in ['1min', '1day']:
|
||||
for symbol in symbol_dict.keys():
|
||||
symbol_info = symbol_dict[symbol]
|
||||
stock_code = symbol_info['code']
|
||||
if ('stock_type' in symbol_info.keys() and symbol_info['stock_type'] in ['stock_cn', 'cb_cn']) or stock_code in stock_list:
|
||||
# if stock_code in stock_list:
|
||||
# print(symbol_info['code'])
|
||||
if symbol_info['exchange'] == 'SZSE':
|
||||
exchange_name = '深交所'
|
||||
exchange = Exchange.SZSE
|
||||
else:
|
||||
exchange_name = '上交所'
|
||||
exchange = Exchange.SSE
|
||||
else:
|
||||
continue
|
||||
num_stocks += 1
|
||||
|
||||
symbol_info = symbol_dict.get(f'{stock_code}_{market_id}')
|
||||
stock_name = symbol_info.get('name')
|
||||
print(f'开始更新:{exchange_name}/{stock_name}, 代码:{stock_code}')
|
||||
bar_file_folder = os.path.abspath(os.path.join(bar_data_folder, f'{exchange.value}'))
|
||||
if not os.path.exists(bar_file_folder):
|
||||
os.makedirs(bar_file_folder)
|
||||
# csv数据文件名
|
||||
bar_file_path = os.path.abspath(os.path.join(bar_file_folder, f'{stock_code}_{start_date}_1m.csv'))
|
||||
stock_name = symbol_info.get('name')
|
||||
print(f'开始更新:{exchange_name}/{stock_name}, 代码:{stock_code}')
|
||||
bar_file_folder = os.path.abspath(os.path.join(bar_data_folder, f'{exchange.value}'))
|
||||
if not os.path.exists(bar_file_folder):
|
||||
os.makedirs(bar_file_folder)
|
||||
# csv数据文件名
|
||||
bar_file_path = os.path.abspath(os.path.join(bar_file_folder, f'{stock_code}_{period[0:2]}.csv'))
|
||||
|
||||
# 如果文件存在,
|
||||
if os.path.exists(bar_file_path):
|
||||
# 取最后一条时间
|
||||
last_dt = get_csv_last_dt(bar_file_path)
|
||||
else:
|
||||
last_dt = None
|
||||
# 如果文件存在,
|
||||
if os.path.exists(bar_file_path):
|
||||
# 取最后一条时间
|
||||
last_dt = get_csv_last_dt(bar_file_path)
|
||||
else:
|
||||
last_dt = None
|
||||
|
||||
if last_dt:
|
||||
start_dt = last_dt - timedelta(days=1)
|
||||
print(f'文件{bar_file_path}存在,最后时间:{start_date}')
|
||||
else:
|
||||
start_dt = datetime.strptime(start_date, '%Y%m%d')
|
||||
print(f'文件{bar_file_path}不存在,或读取最后记录错误,开始时间:{start_date}')
|
||||
if last_dt:
|
||||
start_dt = last_dt - timedelta(days=1)
|
||||
print(f'文件{bar_file_path}存在,最后时间:{start_date}')
|
||||
else:
|
||||
start_dt = datetime.strptime(start_date, '%Y%m%d')
|
||||
print(f'文件{bar_file_path}不存在,或读取最后记录错误,开始时间:{start_date}')
|
||||
|
||||
result, bars = api_01.get_bars(symbol=stock_code,
|
||||
period='1min',
|
||||
callback=None,
|
||||
start_dt=start_dt,
|
||||
return_bar=False)
|
||||
# [dict] => dataframe
|
||||
if not result or len(bars) == 0:
|
||||
continue
|
||||
if last_dt is None:
|
||||
data_df = pd.DataFrame(bars)
|
||||
data_df.set_index('datetime', inplace=True)
|
||||
data_df = data_df.sort_index()
|
||||
# print(data_df.head())
|
||||
print(data_df.tail())
|
||||
data_df.to_csv(bar_file_path, index=True)
|
||||
print(f'首次更新{stock_code} {stock_name}数据 => 文件{bar_file_path}')
|
||||
continue
|
||||
result, bars = api_01.get_bars(symbol=stock_code,
|
||||
period=period,
|
||||
callback=None,
|
||||
start_dt=start_dt,
|
||||
return_bar=False)
|
||||
# [dict] => dataframe
|
||||
if not result or len(bars) == 0:
|
||||
continue
|
||||
|
||||
# 获取标题
|
||||
headers = []
|
||||
with open(bar_file_path, "r", encoding='utf8') as f:
|
||||
reader = csv.reader(f)
|
||||
for header in reader:
|
||||
headers = header
|
||||
break
|
||||
# 全新数据
|
||||
if last_dt is None:
|
||||
data_df = pd.DataFrame(bars)
|
||||
data_df.set_index('datetime', inplace=True)
|
||||
data_df = data_df.sort_index()
|
||||
# print(data_df.head())
|
||||
print(data_df.tail())
|
||||
data_df.to_csv(bar_file_path, index=True)
|
||||
print(f'首次更新{stock_code} {stock_name}数据 => 文件{bar_file_path}')
|
||||
|
||||
bar_count = 0
|
||||
# 写入所有大于最后bar时间的数据
|
||||
with open(bar_file_path, 'a', encoding='utf8', newline='\n') as csvWriteFile:
|
||||
# 增量更新
|
||||
else:
|
||||
# 获取标题
|
||||
headers = []
|
||||
with open(bar_file_path, "r", encoding='utf8') as f:
|
||||
reader = csv.reader(f)
|
||||
for header in reader:
|
||||
headers = header
|
||||
break
|
||||
|
||||
writer = csv.DictWriter(f=csvWriteFile, fieldnames=headers, dialect='excel',
|
||||
extrasaction='ignore')
|
||||
for bar in bars:
|
||||
if bar['datetime'] <= last_dt:
|
||||
continue
|
||||
bar_count += 1
|
||||
writer.writerow(bar)
|
||||
bar_count = 0
|
||||
# 写入所有大于最后bar时间的数据
|
||||
# with open(bar_file_path, 'a', encoding='utf8', newline='\n') as csvWriteFile:
|
||||
with open(bar_file_path, 'a', encoding='utf8') as csvWriteFile:
|
||||
|
||||
print(f'更新{stock_code} {stock_name} 数据 => 文件{bar_file_path}, 最后记录:{bars[-1]}')
|
||||
writer = csv.DictWriter(f=csvWriteFile, fieldnames=headers, dialect='excel',
|
||||
extrasaction='ignore')
|
||||
for bar in bars:
|
||||
if bar['datetime'] <= last_dt:
|
||||
continue
|
||||
bar_count += 1
|
||||
writer.writerow(bar)
|
||||
|
||||
print('更新完毕')
|
||||
print(f'更新{stock_code} {stock_name} 数据 => 文件{bar_file_path}, 最后记录:{bars[-1]}')
|
||||
|
||||
# 输出 5、15、30分钟的数据
|
||||
if period == '1min':
|
||||
out_files, err_msg = resample_bars_file(vnpy_root=vnpy_root, symbol=stock_code, exchange=exchange, x_mins=[5,15,30])
|
||||
|
||||
msg = 'tdx股票数据补充完毕: num_stocks={}'.format(num_stocks)
|
||||
send_wx_msg(content=msg)
|
||||
os._exit(0)
|
||||
|
0
vnpy/data/__init__.py
Normal file
0
vnpy/data/__init__.py
Normal file
78
vnpy/data/common.py
Normal file
78
vnpy/data/common.py
Normal file
@ -0,0 +1,78 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def resample_bars_file(vnpy_root, symbol, exchange, x_mins=[], include_day=False):
|
||||
"""
|
||||
重建x分钟K线(和日线)csv文件
|
||||
:param symbol:
|
||||
:param x_mins: [5, 15, 30, 60]
|
||||
:param include_day: 是否也重建日线
|
||||
:return: out_files,err_msg
|
||||
"""
|
||||
err_msg = ""
|
||||
out_files = []
|
||||
|
||||
# 1分钟 csv文件路径
|
||||
csv_file = os.path.abspath(os.path.join(vnpy_root, 'bar_data', exchange.value, f'{symbol}_1m.csv'))
|
||||
|
||||
if not os.path.exists(csv_file):
|
||||
err_msg = f'{csv_file} 文件不存在,不能转换'
|
||||
return out_files, err_msg
|
||||
|
||||
# 载入1分钟csv => dataframe
|
||||
df_1m = pd.read_csv(csv_file)
|
||||
|
||||
datetime_format = "%Y-%m-%d %H:%M:%S"
|
||||
# 转换时间,str =》 datetime
|
||||
df_1m["datetime"] = pd.to_datetime(df_1m["datetime"], format=datetime_format)
|
||||
# 使用'datetime'字段作为索引
|
||||
df_1m.set_index("datetime", inplace=True)
|
||||
|
||||
# 设置df数据中每列的规则
|
||||
ohlc_rule = {
|
||||
'open': 'first', # open列:序列中第一个的值
|
||||
'high': 'max', # high列:序列中最大的值
|
||||
'low': 'min', # low列:序列中最小的值
|
||||
'close': 'last', # close列:序列中最后一个的值
|
||||
'volume': 'sum', # volume列:将所有序列里的volume值作和
|
||||
'amount': 'sum', # amount列:将所有序列里的amount值作和
|
||||
"symbol": 'first',
|
||||
"trading_date": 'first',
|
||||
"date": 'first',
|
||||
"time": 'first',
|
||||
# "pre_close": 'first',
|
||||
# "turnover_rate": 'last',
|
||||
# "change_rate": 'last'
|
||||
}
|
||||
|
||||
for x_min in x_mins:
|
||||
# 目标文件
|
||||
target_file = os.path.abspath(
|
||||
os.path.join(vnpy_root, 'bar_data', exchange.value, f'{symbol}_{x_min}m.csv'))
|
||||
# 合成x分钟K线并删除为空的行 参数 closed:left类似向上取值既 09:30的k线数据是包含09:30-09:35之间的数据
|
||||
#df_target = df_1m.resample(f'{x_min}min', how=ohlc_rule, closed='left', label='left').dropna(axis=0, how='any')
|
||||
df_target = df_1m.resample(f'{x_min}min', closed='left', label='left').agg(ohlc_rule).dropna(axis=0,
|
||||
how='any')
|
||||
# dropna(axis=0, how='any') axis参数0:针对行进行操作 1:针对列进行操作 how参数any:只要包含就删除 all:全是为NaN才删除
|
||||
|
||||
if len(df_target) > 0:
|
||||
df_target.to_csv(target_file)
|
||||
print(f'生成[{x_min}分钟] => {target_file}')
|
||||
out_files.append(target_file)
|
||||
|
||||
if include_day:
|
||||
# 目标文件
|
||||
target_file = os.path.abspath(
|
||||
os.path.join(vnpy_root, 'bar_data', exchange.value, f'{symbol}_1d.csv'))
|
||||
# 合成x分钟K线并删除为空的行 参数 closed:left类似向上取值既 09:30的k线数据是包含09:30-09:35之间的数据
|
||||
# df_target = df_1m.resample(f'D', how=ohlc_rule, closed='left', label='left').dropna(axis=0, how='any')
|
||||
df_target = df_1m.resample(f'D', closed='left', label='left').agg(ohlc_rule).dropna(axis=0, how='any')
|
||||
# dropna(axis=0, how='any') axis参数0:针对行进行操作 1:针对列进行操作 how参数any:只要包含就删除 all:全是为NaN才删除
|
||||
|
||||
if len(df_target) > 0:
|
||||
df_target.to_csv(target_file)
|
||||
print(f'生成[日线] => {target_file}')
|
||||
out_files.append(target_file)
|
||||
|
||||
return out_files,err_msg
|
Loading…
Reference in New Issue
Block a user