[update] 下载股票1m和日线数据,同时更新5/15/30分钟

This commit is contained in:
msincenselee 2021-08-09 18:33:44 +08:00
parent 917562f81f
commit ab8b9bef24
3 changed files with 164 additions and 67 deletions

View File

@ -1,6 +1,6 @@
# flake8: noqa # flake8: noqa
""" """
下载通达信股票合约1分钟bar => vnpy项目目录/bar_data/ 下载通达信股票合约1分钟&日线bar => vnpy项目目录/bar_data/
上海股票 => SSE子目录 上海股票 => SSE子目录
深圳股票 => SZSE子目录 深圳股票 => SZSE子目录
""" """
@ -18,8 +18,10 @@ if vnpy_root not in sys.path:
os.environ["VNPY_TESTING"] = "1" os.environ["VNPY_TESTING"] = "1"
from vnpy.data.tdx.tdx_stock_data import * from vnpy.data.tdx.tdx_stock_data import *
from vnpy.data.common import resample_bars_file
from vnpy.trader.utility import load_json from vnpy.trader.utility import load_json
from vnpy.trader.utility import get_csv_last_dt from vnpy.trader.utility import get_csv_last_dt
from vnpy.trader.util_wechat import send_wx_msg
# 保存的1分钟指数 bar目录 # 保存的1分钟指数 bar目录
bar_data_folder = os.path.abspath(os.path.join(vnpy_root, 'bar_data')) bar_data_folder = os.path.abspath(os.path.join(vnpy_root, 'bar_data'))
@ -30,83 +32,100 @@ start_date = '20160101'
# 创建API对象 # 创建API对象
api_01 = TdxStockData() api_01 = TdxStockData()
# 更新本地合约缓存信息 # 额外需要数据下载的基金列表
stock_list = load_json('stock_list.json') stock_list = load_json('stock_list.json')
symbol_dict = api_01.symbol_dict symbol_dict = api_01.symbol_dict
# 逐一合约下载并更新 # 下载所有的股票数据
for stock_code in stock_list: num_stocks = 0
market_id = get_tdx_market_code(stock_code) for period in ['1min', '1day']:
if market_id == 0: for symbol in symbol_dict.keys():
exchange_name = '深交所' symbol_info = symbol_dict[symbol]
exchange = Exchange.SZSE stock_code = symbol_info['code']
else: if ('stock_type' in symbol_info.keys() and symbol_info['stock_type'] in ['stock_cn', 'cb_cn']) or stock_code in stock_list:
exchange_name = '上交所' # if stock_code in stock_list:
exchange = Exchange.SSE # print(symbol_info['code'])
if symbol_info['exchange'] == 'SZSE':
exchange_name = '深交所'
exchange = Exchange.SZSE
else:
exchange_name = '上交所'
exchange = Exchange.SSE
else:
continue
num_stocks += 1
symbol_info = symbol_dict.get(f'{stock_code}_{market_id}') stock_name = symbol_info.get('name')
stock_name = symbol_info.get('name') print(f'开始更新:{exchange_name}/{stock_name}, 代码:{stock_code}')
print(f'开始更新:{exchange_name}/{stock_name}, 代码:{stock_code}') bar_file_folder = os.path.abspath(os.path.join(bar_data_folder, f'{exchange.value}'))
bar_file_folder = os.path.abspath(os.path.join(bar_data_folder, f'{exchange.value}')) if not os.path.exists(bar_file_folder):
if not os.path.exists(bar_file_folder): os.makedirs(bar_file_folder)
os.makedirs(bar_file_folder) # csv数据文件名
# csv数据文件名 bar_file_path = os.path.abspath(os.path.join(bar_file_folder, f'{stock_code}_{period[0:2]}.csv'))
bar_file_path = os.path.abspath(os.path.join(bar_file_folder, f'{stock_code}_{start_date}_1m.csv'))
# 如果文件存在, # 如果文件存在,
if os.path.exists(bar_file_path): if os.path.exists(bar_file_path):
# 取最后一条时间 # 取最后一条时间
last_dt = get_csv_last_dt(bar_file_path) last_dt = get_csv_last_dt(bar_file_path)
else: else:
last_dt = None last_dt = None
if last_dt: if last_dt:
start_dt = last_dt - timedelta(days=1) start_dt = last_dt - timedelta(days=1)
print(f'文件{bar_file_path}存在,最后时间:{start_date}') print(f'文件{bar_file_path}存在,最后时间:{start_date}')
else: else:
start_dt = datetime.strptime(start_date, '%Y%m%d') start_dt = datetime.strptime(start_date, '%Y%m%d')
print(f'文件{bar_file_path}不存在,或读取最后记录错误,开始时间:{start_date}') print(f'文件{bar_file_path}不存在,或读取最后记录错误,开始时间:{start_date}')
result, bars = api_01.get_bars(symbol=stock_code, result, bars = api_01.get_bars(symbol=stock_code,
period='1min', period=period,
callback=None, callback=None,
start_dt=start_dt, start_dt=start_dt,
return_bar=False) return_bar=False)
# [dict] => dataframe # [dict] => dataframe
if not result or len(bars) == 0: if not result or len(bars) == 0:
continue continue
if last_dt is None:
data_df = pd.DataFrame(bars)
data_df.set_index('datetime', inplace=True)
data_df = data_df.sort_index()
# print(data_df.head())
print(data_df.tail())
data_df.to_csv(bar_file_path, index=True)
print(f'首次更新{stock_code} {stock_name}数据 => 文件{bar_file_path}')
continue
# 获取标题 # 全新数据
headers = [] if last_dt is None:
with open(bar_file_path, "r", encoding='utf8') as f: data_df = pd.DataFrame(bars)
reader = csv.reader(f) data_df.set_index('datetime', inplace=True)
for header in reader: data_df = data_df.sort_index()
headers = header # print(data_df.head())
break print(data_df.tail())
data_df.to_csv(bar_file_path, index=True)
print(f'首次更新{stock_code} {stock_name}数据 => 文件{bar_file_path}')
bar_count = 0 # 增量更新
# 写入所有大于最后bar时间的数据 else:
with open(bar_file_path, 'a', encoding='utf8', newline='\n') as csvWriteFile: # 获取标题
headers = []
with open(bar_file_path, "r", encoding='utf8') as f:
reader = csv.reader(f)
for header in reader:
headers = header
break
writer = csv.DictWriter(f=csvWriteFile, fieldnames=headers, dialect='excel', bar_count = 0
extrasaction='ignore') # 写入所有大于最后bar时间的数据
for bar in bars: # with open(bar_file_path, 'a', encoding='utf8', newline='\n') as csvWriteFile:
if bar['datetime'] <= last_dt: with open(bar_file_path, 'a', encoding='utf8') as csvWriteFile:
continue
bar_count += 1
writer.writerow(bar)
print(f'更新{stock_code} {stock_name} 数据 => 文件{bar_file_path}, 最后记录:{bars[-1]}') writer = csv.DictWriter(f=csvWriteFile, fieldnames=headers, dialect='excel',
extrasaction='ignore')
for bar in bars:
if bar['datetime'] <= last_dt:
continue
bar_count += 1
writer.writerow(bar)
print('更新完毕') print(f'更新{stock_code} {stock_name} 数据 => 文件{bar_file_path}, 最后记录:{bars[-1]}')
# 输出 5、15、30分钟的数据
if period == '1min':
out_files, err_msg = resample_bars_file(vnpy_root=vnpy_root, symbol=stock_code, exchange=exchange, x_mins=[5,15,30])
msg = 'tdx股票数据补充完毕: num_stocks={}'.format(num_stocks)
send_wx_msg(content=msg)
os._exit(0) os._exit(0)

0
vnpy/data/__init__.py Normal file
View File

78
vnpy/data/common.py Normal file
View File

@ -0,0 +1,78 @@
import os
import pandas as pd
def resample_bars_file(vnpy_root, symbol, exchange, x_mins=[], include_day=False):
"""
重建x分钟K线和日线csv文件
:param symbol:
:param x_mins: [5, 15, 30, 60]
:param include_day: 是否也重建日线
:return: out_files,err_msg
"""
err_msg = ""
out_files = []
# 1分钟 csv文件路径
csv_file = os.path.abspath(os.path.join(vnpy_root, 'bar_data', exchange.value, f'{symbol}_1m.csv'))
if not os.path.exists(csv_file):
err_msg = f'{csv_file} 文件不存在,不能转换'
return out_files, err_msg
# 载入1分钟csv => dataframe
df_1m = pd.read_csv(csv_file)
datetime_format = "%Y-%m-%d %H:%M:%S"
# 转换时间str =》 datetime
df_1m["datetime"] = pd.to_datetime(df_1m["datetime"], format=datetime_format)
# 使用'datetime'字段作为索引
df_1m.set_index("datetime", inplace=True)
# 设置df数据中每列的规则
ohlc_rule = {
'open': 'first', # open列序列中第一个的值
'high': 'max', # high列序列中最大的值
'low': 'min', # low列序列中最小的值
'close': 'last', # close列序列中最后一个的值
'volume': 'sum', # volume列将所有序列里的volume值作和
'amount': 'sum', # amount列将所有序列里的amount值作和
"symbol": 'first',
"trading_date": 'first',
"date": 'first',
"time": 'first',
# "pre_close": 'first',
# "turnover_rate": 'last',
# "change_rate": 'last'
}
for x_min in x_mins:
# 目标文件
target_file = os.path.abspath(
os.path.join(vnpy_root, 'bar_data', exchange.value, f'{symbol}_{x_min}m.csv'))
# 合成x分钟K线并删除为空的行 参数 closedleft类似向上取值既 0930的k线数据是包含0930-0935之间的数据
#df_target = df_1m.resample(f'{x_min}min', how=ohlc_rule, closed='left', label='left').dropna(axis=0, how='any')
df_target = df_1m.resample(f'{x_min}min', closed='left', label='left').agg(ohlc_rule).dropna(axis=0,
how='any')
# dropna(axis=0, how='any') axis参数0针对行进行操作 1针对列进行操作 how参数any只要包含就删除 all全是为NaN才删除
if len(df_target) > 0:
df_target.to_csv(target_file)
print(f'生成[{x_min}分钟] => {target_file}')
out_files.append(target_file)
if include_day:
# 目标文件
target_file = os.path.abspath(
os.path.join(vnpy_root, 'bar_data', exchange.value, f'{symbol}_1d.csv'))
# 合成x分钟K线并删除为空的行 参数 closedleft类似向上取值既 0930的k线数据是包含0930-0935之间的数据
# df_target = df_1m.resample(f'D', how=ohlc_rule, closed='left', label='left').dropna(axis=0, how='any')
df_target = df_1m.resample(f'D', closed='left', label='left').agg(ohlc_rule).dropna(axis=0, how='any')
# dropna(axis=0, how='any') axis参数0针对行进行操作 1针对列进行操作 how参数any只要包含就删除 all全是为NaN才删除
if len(df_target) > 0:
df_target.to_csv(target_file)
print(f'生成[日线] => {target_file}')
out_files.append(target_file)
return out_files,err_msg