[新增] 股票+缠论得使用例子

This commit is contained in:
msincenselee 2021-11-06 14:03:55 +08:00
parent a2bf8ec41b
commit a5afa10d0b
9 changed files with 850 additions and 0 deletions

187
examples/stock/demo_03.py Normal file
View File

@ -0,0 +1,187 @@
# flake8: noqa
# 示例代码
# 从本地bar_data目录下读取某股票日线数据前复权后推送到K线识别出顶、底分型并识别出其强弱在UI界面上展示出来
import os
import sys
import json
from datetime import datetime
vnpy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
if vnpy_root not in sys.path:
print(f'sys.path append({vnpy_root})')
sys.path.append(vnpy_root)
os.environ["VNPY_TESTING"] = "1"
from vnpy.data.tdx.tdx_common import FakeStrategy
from vnpy.component.cta_line_bar import CtaDayBar
from vnpy.trader.ui.kline.ui_snapshot import UiSnapshot
from vnpy.trader.utility import append_data
from vnpy.trader.ui import create_qapp
from vnpy.data.common import get_stock_bars
# 本示例中输出的dist文件,主要用于图形显示一些逻辑
demo_03_dist = 'demo_03_dist.csv'
class DemoStrategy(FakeStrategy):
# 输出csv的head
dist_fieldnames = ['datetime', 'vt_symbol', 'volume', 'price',
'operation']
def __init__(self, *args, **kwargs):
super().__init__()
# 最后一个找到的符合要求的分型index
self.last_found_fx = None
# 如果之前存在,移除
if os.path.exists(demo_03_dist):
self.write_log(f'移除{demo_03_dist}')
os.remove(demo_03_dist)
self.vt_symbol = kwargs.get('vt_symbol')
# 创建一个日线bar的 kline对象
setting = {}
setting['name'] = f'{self.vt_symbol}_D1'
setting['bar_interval'] = 1
setting['para_ma1_len'] = 55 # 双均线
setting['para_ma2_len'] = 89
setting['para_macd_fast_len'] = 12 # 激活macd
setting['para_macd_slow_len'] = 26
setting['para_macd_signal_len'] = 9
setting['para_active_chanlun'] = True # 激活缠论
setting['is_stock'] = True
setting['price_tick'] = 1
setting['underly_symbol'] = self.vt_symbol.split('.')[0]
self.kline = CtaDayBar(strategy=self, cb_on_bar=self.on_bar, setting=setting)
def on_bar(self, *args, **kwargs):
"""
重构on_bar函数实现demo的分型强弱判断
:param args:
:param kwargs:
:return:
"""
# 至少要有分型
if len(self.kline.fenxing_list) == 0:
return
cur_fx = self.kline.fenxing_list[-1]
# 如果的分型已经处理过了,就不再计算
if cur_fx.index == self.last_found_fx:
return
# 分型是非实时的,已经走完的
if cur_fx.is_rt:
return
# 分型前x根bar
pre_bars = [bar for bar in self.kline.line_bar[-10:] if
bar.datetime.strftime('%Y-%m-%d %H:%M:%S') < cur_fx.index]
if len(pre_bars) == 0:
return
pre_bar = pre_bars[-1]
# 分型后x根bar
extra_bars = \
[bar for bar in self.kline.line_bar[-10:] if bar.datetime.strftime('%Y-%m-%d %H:%M:%S') > cur_fx.index]
# 分型后有三根bar
if len(extra_bars) < 3:
return
# 处理顶分型
if cur_fx.direction == 1:
# 顶分型后第一根bar的低点没有超过前bar的低点
if extra_bars[0].low_price >= pre_bar.low_price:
return
# 找到正确形态第二、第三根bar都站在顶分型之下
if pre_bar.low_price >= extra_bars[1].high_price > extra_bars[2].high_price:
self.last_found_fx = cur_fx.index
append_data(file_name=demo_03_dist,
field_names=self.dist_fieldnames,
dict_data={
'datetime': extra_bars[-1].datetime,
'vt_symbol': self.vt_symbol,
'volume': 0,
'price': extra_bars[-1].high_price,
'operation': '强顶分'
})
# 处理底分型
if cur_fx.direction == -1:
# 底分型后第一根bar的高点没有超过前bar的高点
if extra_bars[0].high_price <= pre_bar.high_price:
return
# 找到正确形态第二、第三根bar都站在底分型之上
if pre_bar.high_price <= extra_bars[1].low_price < extra_bars[2].low_price:
self.last_found_fx = cur_fx.index
append_data(file_name=demo_03_dist,
field_names=self.dist_fieldnames,
dict_data={
'datetime': extra_bars[-1].datetime,
'vt_symbol': self.vt_symbol,
'volume': 0,
'price': extra_bars[-1].low_price,
'operation': '强底分'
})
if __name__ == '__main__':
# 股票代码.交易所
vt_symbol = '600000.SSE'
t1 = DemoStrategy(vt_symbol=vt_symbol)
# 获取股票得日线数据,返回数据类型是barData
print('加载数据')
bars, msg = get_stock_bars(vt_symbol=vt_symbol, freq='1d', start_date='2019-01-01')
if len(msg) > 0:
print(msg)
sys.exit(0)
display_month = None
# 推送bar到kline中
for bar in bars:
if bar.datetime.month != display_month:
t1.write_log(f'推送:{bar.datetime.year}{bar.datetime.month}月数据')
display_month = bar.datetime.month
t1.kline.add_bar(bar, bar_is_completed=True)
# 获取kline的切片数据
data = t1.kline.get_data()
# 暂时不显示段、中枢等
data.pop('duan_list', None)
data.pop('bi_zs_list', None)
data.pop('duan_zs_list', None)
snapshot = {
'strategy': "demo",
'datetime': datetime.now(),
"kline_names": [t1.kline.name],
"klines": {t1.kline.name: data}}
# 创建一个GUI界面应用app
qApp = create_qapp()
# 创建切片回放工具窗口
ui = UiSnapshot()
# 显示切片内容
ui.show(snapshot_file="",
d=snapshot, # 切片数据
dist_file=demo_03_dist, # 本地dist csv文件
dist_include_list=['强底分','强顶分']) # 指定输出的文字内容
sys.exit(qApp.exec_())

View File

@ -0,0 +1,5 @@
datetime,vt_symbol,volume,price,operation
2019-04-02 09:30:00,600000.SSE,0,107.52293310892577,强底分
2019-04-24 09:30:00,600000.SSE,0,110.91541829027662,强顶分
2020-01-09 09:30:00,600000.SSE,0,120.77593836872654,强顶分
2020-01-17 09:30:00,600000.SSE,0,119.41563013287603,强顶分
1 datetime vt_symbol volume price operation
2 2019-04-02 09:30:00 600000.SSE 0 107.52293310892577 强底分
3 2019-04-24 09:30:00 600000.SSE 0 110.91541829027662 强顶分
4 2020-01-09 09:30:00 600000.SSE 0 120.77593836872654 强顶分
5 2020-01-17 09:30:00 600000.SSE 0 119.41563013287603 强顶分

173
examples/stock/demo_04.py Normal file
View File

@ -0,0 +1,173 @@
# flake8: noqa
# 示例代码
# 从本地bar_data目录下读取某股票日线数据前复权后推送到K线识别出分笔、线段并找出首次破坏线段的分笔位置标注在图上
import os
import sys
import json
from datetime import datetime
vnpy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
if vnpy_root not in sys.path:
print(f'sys.path append({vnpy_root})')
sys.path.append(vnpy_root)
os.environ["VNPY_TESTING"] = "1"
from vnpy.data.tdx.tdx_common import FakeStrategy
from vnpy.component.cta_line_bar import CtaDayBar
from vnpy.trader.ui.kline.ui_snapshot import UiSnapshot
from vnpy.trader.utility import append_data
from vnpy.trader.ui import create_qapp
from vnpy.data.common import get_stock_bars
# 本示例中输出的dist文件,主要用于图形显示一些逻辑
demo_04_dist = 'demo_04_dist.csv'
class DemoStrategy(FakeStrategy):
# 输出csv的head
dist_fieldnames = ['datetime', 'vt_symbol', 'volume', 'price',
'operation']
def __init__(self, *args, **kwargs):
super().__init__()
# 最后一个找到的符合要求的分笔位置
self.last_found_bi = None
# 如果之前存在,移除
if os.path.exists(demo_04_dist):
self.write_log(f'移除{demo_04_dist}')
os.remove(demo_04_dist)
self.vt_symbol = kwargs.get('vt_symbol')
# 创建一个日线bar的 kline对象
setting = {}
setting['name'] = f'{self.vt_symbol}_D1'
setting['bar_interval'] = 1
setting['para_ma1_len'] = 55 # 双均线
setting['para_ma2_len'] = 89
setting['para_macd_fast_len'] = 12 # 激活macd
setting['para_macd_slow_len'] = 26
setting['para_macd_signal_len'] = 9
setting['para_active_chanlun'] = True # 激活缠论
setting['is_stock'] = True
setting['price_tick'] = 1
setting['underly_symbol'] = self.vt_symbol.split('.')[0]
self.kline = CtaDayBar(strategy=self, cb_on_bar=self.on_bar, setting=setting)
def on_bar(self, *args, **kwargs):
"""
重构on_bar函数实现demo的判断逻辑
:param args:
:param kwargs:
:return:
"""
if self.kline.cur_duan is None:
return
# 当前笔的start == 找到的一笔
if self.kline.cur_bi.start == self.last_found_bi:
return
# 处理上涨线段
if self.kline.cur_duan.direction == 1:
# 当前一笔,起点== 线段的结束
if self.kline.cur_duan.end != self.kline.cur_bi.start:
return
if len(self.kline.cur_duan.bi_list) <=3:
return
# 找到次高的分笔位置
second_high = max([bi.high for bi in self.kline.cur_duan.bi_list[:-2] if bi.direction == 1])
if self.kline.cur_bi.low < second_high:
self.last_found_bi = self.kline.cur_bi.start
append_data(file_name=demo_04_dist,
field_names=self.dist_fieldnames,
dict_data={
'datetime': self.kline.cur_datetime,
'vt_symbol': self.vt_symbol,
'volume': 0,
'price': self.kline.cur_bi.low,
'operation': '上升段破坏点'
})
# 处理下跌线段
if self.kline.cur_duan.direction == -1:
# 当前一笔,起点== 线段的结束
if self.kline.cur_duan.end != self.kline.cur_bi.start:
return
if len(self.kline.cur_duan.bi_list) <= 3:
return
# 找到次低的分笔位置
second_low = min([bi.low for bi in self.kline.cur_duan.bi_list[:-2] if bi.direction == -1])
if self.kline.cur_bi.high > second_low:
self.last_found_bi = self.kline.cur_bi.start
append_data(file_name=demo_04_dist,
field_names=self.dist_fieldnames,
dict_data={
'datetime': self.kline.cur_datetime,
'vt_symbol': self.vt_symbol,
'volume': 0,
'price': self.kline.cur_bi.high,
'operation': '下跌段破坏点'
})
if __name__ == '__main__':
# 股票代码.交易所
vt_symbol = '600000.SSE'
t1 = DemoStrategy(vt_symbol=vt_symbol)
# 获取股票得日线数据,返回数据类型是barData
print('加载数据')
bars, msg = get_stock_bars(vt_symbol=vt_symbol, freq='1d', start_date='2019-01-01')
if len(msg) > 0:
print(msg)
sys.exit(0)
display_month = None
# 推送bar到kline中
for bar in bars:
if bar.datetime.month != display_month:
t1.write_log(f'推送:{bar.datetime.year}{bar.datetime.month}月数据')
display_month = bar.datetime.month
t1.kline.add_bar(bar, bar_is_completed=True)
# 获取kline的切片数据
data = t1.kline.get_data()
# 暂时不显示中枢等
data.pop('bi_zs_list', None)
data.pop('duan_zs_list', None)
snapshot = {
'strategy': "demo",
'datetime': datetime.now(),
"kline_names": [t1.kline.name],
"klines": {t1.kline.name: data}}
# 创建一个GUI界面应用app
qApp = create_qapp()
# 创建切片回放工具窗口
ui = UiSnapshot()
# 显示切片内容
ui.show(snapshot_file="",
d=snapshot, # 切片数据
dist_file=demo_04_dist, # 本地dist csv文件
dist_include_list=['上升段破坏点','下跌段破坏点']) # 指定输出的文字内容
sys.exit(qApp.exec_())

View File

@ -0,0 +1,6 @@
datetime,vt_symbol,volume,price,operation
2020-04-28 09:30:00,600000.SSE,0,101.2458,下跌段破坏点
2020-11-11 09:30:00,600000.SSE,0,93.181114,下跌段破坏点
2021-03-02 09:30:00,600000.SSE,0,102.02312,上升段破坏点
2021-04-16 09:30:00,600000.SSE,0,100.85714,上升段破坏点
2021-09-13 09:30:00,600000.SSE,0,92.1123,下跌段破坏点
1 datetime vt_symbol volume price operation
2 2020-04-28 09:30:00 600000.SSE 0 101.2458 下跌段破坏点
3 2020-11-11 09:30:00 600000.SSE 0 93.181114 下跌段破坏点
4 2021-03-02 09:30:00 600000.SSE 0 102.02312 上升段破坏点
5 2021-04-16 09:30:00 600000.SSE 0 100.85714 上升段破坏点
6 2021-09-13 09:30:00 600000.SSE 0 92.1123 下跌段破坏点

162
examples/stock/demo_05.py Normal file
View File

@ -0,0 +1,162 @@
# flake8: noqa
# 示例代码
# 从本地bar_data目录下读取某股票日线数据前复权后推送到K线识别出其中枢类型标注在图上
import os
import sys
import json
from datetime import datetime
vnpy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
if vnpy_root not in sys.path:
print(f'sys.path append({vnpy_root})')
sys.path.append(vnpy_root)
os.environ["VNPY_TESTING"] = "1"
from vnpy.data.tdx.tdx_common import FakeStrategy
from vnpy.component.cta_line_bar import CtaDayBar
from vnpy.trader.ui.kline.ui_snapshot import UiSnapshot
from vnpy.trader.utility import append_data
from vnpy.trader.ui import create_qapp
from vnpy.data.common import get_stock_bars
# 本示例中输出的dist文件,主要用于图形显示一些逻辑
demo_05_dist = 'demo_05_dist.csv'
class DemoStrategy(FakeStrategy):
# 输出csv的head
dist_fieldnames = ['datetime', 'vt_symbol', 'volume', 'price',
'operation']
def __init__(self, *args, **kwargs):
super().__init__()
# 最后一个找到的符合要求的分笔位置
self.last_found_bi = None
# 最后一个处理得中枢开始位置
self.last_found_zs = None
# 最后一个中枢得判断类型
self.last_found_type = None
# 如果之前存在,移除
if os.path.exists(demo_05_dist):
self.write_log(f'移除{demo_05_dist}')
os.remove(demo_05_dist)
self.vt_symbol = kwargs.get('vt_symbol')
# 创建一个日线bar的 kline对象
setting = {}
setting['name'] = f'{self.vt_symbol}_D1'
setting['bar_interval'] = 1
setting['para_ma1_len'] = 55 # 双均线
setting['para_ma2_len'] = 89
setting['para_macd_fast_len'] = 12 # 激活macd
setting['para_macd_slow_len'] = 26
setting['para_macd_signal_len'] = 9
setting['para_active_chanlun'] = True # 激活缠论
setting['is_stock'] = True
setting['price_tick'] = 1
setting['underly_symbol'] = self.vt_symbol.split('.')[0]
self.kline = CtaDayBar(strategy=self, cb_on_bar=self.on_bar, setting=setting)
def on_bar(self, *args, **kwargs):
"""
重构on_bar函数实现demo的判断逻辑
:param args:
:param kwargs:
:return:
"""
if self.kline.cur_duan is None:
return
if self.kline.cur_bi_zs is None:
return
# 当前笔的start == 上一次判断过得
if self.kline.cur_bi.start == self.last_found_bi:
return
# 当前笔中枢与上一个笔中枢得开始不同,可能是个新得笔中枢
if self.kline.cur_bi_zs.start != self.last_found_zs:
# 设置为最新判断中枢
self.last_found_zs = self.kline.cur_bi_zs.start
# 设置中枢得最后一笔开始时间,为最新判断时间
self.last_found_bi = self.kline.cur_bi_zs.bi_list[-1].start
# 设置中枢得类型为None
self.last_found_type = None
return
# K线最后一笔得开始 = 中枢最后一笔得结束
if self.kline.cur_bi.start == self.kline.cur_bi_zs.bi_list[-1].end:
# 获得类型
zs_type = self.kline.cur_bi_zs.get_type()
# 记录下,这一笔已经执行过判断了
self.last_found_bi = self.kline.cur_bi.start
# 不一致时,才写入
if zs_type != self.last_found_type:
self.last_found_type = zs_type
append_data(file_name=demo_05_dist,
field_names=self.dist_fieldnames,
dict_data={
'datetime': self.kline.cur_datetime,
'vt_symbol': self.vt_symbol,
'volume': 0,
'price': self.kline.cur_bi_zs.low,
'operation': zs_type
})
if __name__ == '__main__':
# 股票代码.交易所
vt_symbol = '600000.SSE'
t1 = DemoStrategy(vt_symbol=vt_symbol)
# 获取股票得日线数据,返回数据类型是barData
print('加载数据')
bars, msg = get_stock_bars(vt_symbol=vt_symbol, freq='1d', start_date='2019-01-01')
if len(msg) > 0:
print(msg)
sys.exit(0)
display_month = None
# 推送bar到kline中
for bar in bars:
if bar.datetime.month != display_month:
t1.write_log(f'推送:{bar.datetime.year}{bar.datetime.month}月数据')
display_month = bar.datetime.month
t1.kline.add_bar(bar, bar_is_completed=True)
# 获取kline的切片数据
data = t1.kline.get_data()
snapshot = {
'strategy': "demo",
'datetime': datetime.now(),
"kline_names": [t1.kline.name],
"klines": {t1.kline.name: data}}
# 创建一个GUI界面应用app
qApp = create_qapp()
# 创建切片回放工具窗口
ui = UiSnapshot()
# 显示切片内容
ui.show(snapshot_file="",
d=snapshot, # 切片数据
dist_file=demo_05_dist, # 本地dist csv文件
dist_include_list=['close','enlarge','balance','attact', 'defend']) # 指定输出的文字内容
sys.exit(qApp.exec_())

View File

@ -0,0 +1,15 @@
datetime,vt_symbol,volume,price,operation
2019-08-08 09:30:00,600000.SSE,0,103.18809,close
2019-08-15 09:30:00,600000.SSE,0,103.18809,defend
2019-11-22 09:30:00,600000.SSE,0,109.01899,defend
2019-12-18 09:30:00,600000.SSE,0,103.18809,defend
2020-01-06 09:30:00,600000.SSE,0,103.18809,defend
2020-05-13 09:30:00,600000.SSE,0,99.3025,attact
2020-06-02 09:30:00,600000.SSE,0,99.3025,close
2020-06-12 09:30:00,600000.SSE,0,99.3025,defend
2020-12-08 09:30:00,600000.SSE,0,90.84916,enlarge
2021-01-25 09:30:00,600000.SSE,0,90.84916,close
2021-02-02 09:30:00,600000.SSE,0,90.84916,enlarge
2021-02-08 09:30:00,600000.SSE,0,90.84916,close
2021-05-28 09:30:00,600000.SSE,0,100.66281,enlarge
2021-09-22 09:30:00,600000.SSE,0,87.15689,enlarge
1 datetime vt_symbol volume price operation
2 2019-08-08 09:30:00 600000.SSE 0 103.18809 close
3 2019-08-15 09:30:00 600000.SSE 0 103.18809 defend
4 2019-11-22 09:30:00 600000.SSE 0 109.01899 defend
5 2019-12-18 09:30:00 600000.SSE 0 103.18809 defend
6 2020-01-06 09:30:00 600000.SSE 0 103.18809 defend
7 2020-05-13 09:30:00 600000.SSE 0 99.3025 attact
8 2020-06-02 09:30:00 600000.SSE 0 99.3025 close
9 2020-06-12 09:30:00 600000.SSE 0 99.3025 defend
10 2020-12-08 09:30:00 600000.SSE 0 90.84916 enlarge
11 2021-01-25 09:30:00 600000.SSE 0 90.84916 close
12 2021-02-02 09:30:00 600000.SSE 0 90.84916 enlarge
13 2021-02-08 09:30:00 600000.SSE 0 90.84916 close
14 2021-05-28 09:30:00 600000.SSE 0 100.66281 enlarge
15 2021-09-22 09:30:00 600000.SSE 0 87.15689 enlarge

221
examples/stock/demo_06.py Normal file
View File

@ -0,0 +1,221 @@
# flake8: noqa
# 示例代码
# 从本地bar_data目录下读取某股票日线数据前复权后推送到K线识别出其趋势线段、盘整线段、趋势背驰信号点标注在图上
import os
import sys
import json
from datetime import datetime
vnpy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
if vnpy_root not in sys.path:
print(f'sys.path append({vnpy_root})')
sys.path.append(vnpy_root)
os.environ["VNPY_TESTING"] = "1"
from vnpy.data.tdx.tdx_common import FakeStrategy
from vnpy.component.cta_line_bar import CtaDayBar
from vnpy.trader.ui.kline.ui_snapshot import UiSnapshot
from vnpy.trader.utility import append_data
from vnpy.trader.ui import create_qapp
from vnpy.data.common import get_stock_bars
# 本示例中输出的dist文件,主要用于图形显示一些逻辑
demo_06_dist = 'demo_06_dist.csv'
class DemoStrategy(FakeStrategy):
# 输出csv的head
dist_fieldnames = ['datetime', 'vt_symbol', 'volume', 'price',
'operation']
def __init__(self, *args, **kwargs):
super().__init__()
# 最后一个执行检查的分笔开始位置
self.last_check_bi = None
# 最后一个检查线段
self.last_found_duan = None
# 最后一个判断类型(趋势、盘整)
self.last_found_type = None
# 最后一个判断背驰的分型信号
self.last_found_beichi = None
# 如果之前存在,移除
if os.path.exists(demo_06_dist):
self.write_log(f'移除{demo_06_dist}')
os.remove(demo_06_dist)
self.vt_symbol = kwargs.get('vt_symbol')
# 创建一个日线bar的 kline对象
setting = {}
setting['name'] = f'{self.vt_symbol}_D1'
setting['bar_interval'] = 1
setting['para_ma1_len'] = 55 # 双均线
setting['para_ma2_len'] = 89
setting['para_macd_fast_len'] = 12 # 激活macd
setting['para_macd_slow_len'] = 26
setting['para_macd_signal_len'] = 9
setting['para_active_chanlun'] = True # 激活缠论
setting['is_stock'] = True
setting['price_tick'] = 1
setting['underly_symbol'] = self.vt_symbol.split('.')[0]
self.kline = CtaDayBar(strategy=self, cb_on_bar=self.on_bar, setting=setting)
def on_bar(self, *args, **kwargs):
"""
重构on_bar函数实现demo的判断逻辑
:param args:
:param kwargs:
:return:
"""
if self.kline.cur_duan is None or self.kline.cur_bi_zs is None:
return
cur_fx = self.kline.fenxing_list[-1]
# 分型未结束,不做判断
if cur_fx.is_rt:
return
# 当前段与上一次检查的段,开始时间不同,执行检查
if self.kline.cur_duan.start != self.last_found_duan:
# 判断条件:
# 当前线段后出现一个分笔
# 当前线段的结束时间比最后一个中枢晚
if self.kline.cur_duan.end == self.kline.cur_bi.start \
and self.kline.cur_duan.end > self.kline.cur_bi_zs.end\
and self.kline.cur_bi.start != self.last_check_bi:
# 判断是否盘整, 当前线段比上一线段短
if self.kline.pre_duan and self.kline.pre_duan.height * 0.62 > self.kline.cur_duan.height:
# 获取该线段start -> end 之间,存在的中枢
zs_list = [zs for zs in self.kline.bi_zs_list if zs.start > self.kline.cur_duan.start and zs.end < self.kline.cur_duan.end]
# 存在的一个中枢
if len(zs_list) == 1:
# 记录该笔已经检查过
self.last_check_bi = self.kline.cur_bi.start
# 盘整名称price位置
if self.kline.cur_duan.direction == 1:
self.last_found_type = '下跌盘整'
price = self.kline.cur_duan.high
else:
self.last_found_type = '上涨盘整'
price = self.kline.cur_duan.low
# 写入记录
append_data(file_name=demo_06_dist,
field_names=self.dist_fieldnames,
dict_data={
'datetime': datetime.strptime(self.kline.cur_duan.end, '%Y-%m-%d %H:%M:%S'),
'vt_symbol': self.vt_symbol,
'volume': 0,
'price': price,
'operation': self.last_found_type
})
# 判断是否趋势
if self.kline.is_contain_zs_inside_duan(direction=self.kline.cur_duan.direction,
cur_duan=self.kline.cur_duan,
zs_num=2):
# 记录检查的一笔
self.last_check_bi = self.kline.cur_bi.start
# 记录检查的线段
self.last_found_duan = self.kline.cur_duan.start
# 趋势名称、价格
if self.kline.cur_duan.direction == 1:
self.last_found_type = '上涨趋势'
price = self.kline.cur_duan.high
else:
self.last_found_type = '下跌趋势'
price = self.kline.cur_duan.low
# 记录数据
append_data(file_name=demo_06_dist,
field_names=self.dist_fieldnames,
dict_data={
'datetime': datetime.strptime(self.kline.cur_duan.end, '%Y-%m-%d %H:%M:%S'),
'vt_symbol': self.vt_symbol,
'volume': 0,
'price': price,
'operation': self.last_found_type
})
# 判断是否走势背驰
if self.kline.is_zs_beichi_inside_duan(direction=self.kline.cur_duan.direction,
cur_duan=self.kline.cur_duan):
if cur_fx.index != self.last_found_beichi:
self.last_found_beichi = cur_fx.index
# 趋势名称、价格
if self.kline.cur_duan.direction == 1:
self.last_found_type = '上涨背驰'
price = self.kline.cur_duan.high
else:
self.last_found_type = '下跌背驰'
price = self.kline.cur_duan.low
# 记录数据
append_data(file_name=demo_06_dist,
field_names=self.dist_fieldnames,
dict_data={
'datetime': datetime.strptime(self.kline.cur_duan.end, '%Y-%m-%d %H:%M:%S'),
'vt_symbol': self.vt_symbol,
'volume': 0,
'price': price,
'operation': self.last_found_type
})
if __name__ == '__main__':
# 股票代码.交易所
vt_symbol = '600000.SSE'
t1 = DemoStrategy(vt_symbol=vt_symbol)
# 获取股票得日线数据,返回数据类型是barData
print('加载数据')
bars, msg = get_stock_bars(vt_symbol=vt_symbol, freq='1d', start_date='2019-01-01')
if len(msg) > 0:
print(msg)
sys.exit(0)
display_month = None
# 推送bar到kline中
for bar in bars:
if bar.datetime.month != display_month:
t1.write_log(f'推送:{bar.datetime.year}{bar.datetime.month}月数据')
display_month = bar.datetime.month
t1.kline.add_bar(bar, bar_is_completed=True)
# 获取kline的切片数据
data = t1.kline.get_data()
snapshot = {
'strategy': "demo",
'datetime': datetime.now(),
"kline_names": [t1.kline.name],
"klines": {t1.kline.name: data}}
# 创建一个GUI界面应用app
qApp = create_qapp()
# 创建切片回放工具窗口
ui = UiSnapshot()
# 显示切片内容
ui.show(snapshot_file="",
d=snapshot, # 切片数据
dist_file=demo_06_dist, # 本地dist csv文件
dist_include_list=['上涨趋势','下跌趋势','上涨盘整','下跌盘整','上涨背驰','下跌背驰']) # 指定输出的文字内容
sys.exit(qApp.exec_())

View File

@ -0,0 +1,3 @@
datetime,vt_symbol,volume,price,operation
2020-07-31 09:30:00,600000.SSE,0,100.17699,下跌背驰
2021-02-19 09:30:00,600000.SSE,0,108.04734,下跌盘整
1 datetime vt_symbol volume price operation
2 2020-07-31 09:30:00 600000.SSE 0 100.17699 下跌背驰
3 2021-02-19 09:30:00 600000.SSE 0 108.04734 下跌盘整

View File

@ -0,0 +1,78 @@
# flake8: noqa
# 示例代码
# 从策略保存K线数据中读取某一K线并显示
import os
import sys
import json
vnpy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
if vnpy_root not in sys.path:
print(f'sys.path append({vnpy_root})')
sys.path.append(vnpy_root)
os.environ["VNPY_TESTING"] = "1"
from vnpy.data.tdx.tdx_common import FakeStrategy
from vnpy.data.tdx.tdx_stock_data import *
from vnpy.component.cta_line_bar import CtaMinuteBar
from vnpy.trader.ui.kline.ui_snapshot import UiSnapshot
from vnpy.trader.ui import create_qapp
from vnpy.data.common import get_stock_bars
snapshot_file_name = 'prod/stock_pb/data/stock_clone_value_klines.pkb2'
kline_name = '601012.SSE_D1'
def get_klines(pkb2_files):
"""
从缓存加载K线数据
:param kline_names: 指定需要加载的k线名称列表
:param vt_symbol: 指定股票代码,
如果使用该选项加载 data/klines/strategyname_vtsymbol_klines.pkb2
如果空白加载 data/strategyname_klines.pkb2
:return:
"""
if not os.path.exists(pkb2_files):
return {}
try:
with bz2.BZ2File(pkb2_files, 'rb') as f:
klines = pickle.load(f)
return klines
except Exception as ex:
print(f'加载缓存K线数据失败:{str(ex)}')
return {}
if __name__ == "__main__":
# 创建一个假的策略
t1 = FakeStrategy()
file_name = os.path.abspath(os.path.join(vnpy_root,snapshot_file_name))
klines = get_klines(file_name)
print(f'kline names:{klines.keys()}')
kline = klines.get(kline_name,None)
if kline:
# 获取kline的切片数据
data = kline.get_data()
snapshot = {
'strategy': "demo",
'datetime': datetime.now(),
"kline_names": [kline.name],
"klines": {kline.name: data}}
# 创建一个GUI界面应用app
qApp = create_qapp()
# 创建切片回放工具窗口
ui = UiSnapshot()
# 显示切片内容
ui.export(snapshot_file="",
d=snapshot,
export_file='s.png')
#sys.exit(qApp.exec_())
else:
print(f'not found {kline_name}')