commit
5ea402283e
@ -6,7 +6,6 @@ from functools import lru_cache
|
|||||||
from time import time
|
from time import time
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
import random
|
import random
|
||||||
import math
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
@ -85,6 +84,15 @@ class OptimizationSetting:
|
|||||||
settings.append(setting)
|
settings.append(setting)
|
||||||
|
|
||||||
return settings
|
return settings
|
||||||
|
|
||||||
|
def generate_setting_ga(self):
|
||||||
|
""""""
|
||||||
|
settings_ga = []
|
||||||
|
settings = self.generate_setting()
|
||||||
|
for d in settings:
|
||||||
|
param = [tuple(i) for i in d.items()]
|
||||||
|
settings_ga.append(param)
|
||||||
|
return settings_ga
|
||||||
|
|
||||||
|
|
||||||
class BacktestingEngine:
|
class BacktestingEngine:
|
||||||
@ -520,10 +528,10 @@ class BacktestingEngine:
|
|||||||
|
|
||||||
return result_values
|
return result_values
|
||||||
|
|
||||||
def run_ga_optimization(self, optimization_setting: OptimizationSetting, output=True):
|
def run_ga_optimization(self, optimization_setting: OptimizationSetting, population_size=100, ngen_size=30, output=True):
|
||||||
""""""
|
""""""
|
||||||
# Get optimization setting and target
|
# Get optimization setting and target
|
||||||
settings = optimization_setting.generate_setting()
|
settings = optimization_setting.generate_setting_ga()
|
||||||
target_name = optimization_setting.target_name
|
target_name = optimization_setting.target_name
|
||||||
|
|
||||||
if not settings:
|
if not settings:
|
||||||
@ -537,7 +545,16 @@ class BacktestingEngine:
|
|||||||
# Define parameter generation function
|
# Define parameter generation function
|
||||||
def generate_parameter():
|
def generate_parameter():
|
||||||
""""""
|
""""""
|
||||||
return list(random.choice(settings).values())
|
return random.choice(settings)
|
||||||
|
|
||||||
|
def mutate_individual(individual, indpb):
|
||||||
|
""""""
|
||||||
|
size = len(individual)
|
||||||
|
paramlist = generate_parameter()
|
||||||
|
for i in range(size):
|
||||||
|
if random.random() < indpb:
|
||||||
|
individual[i] = paramlist[i]
|
||||||
|
return individual,
|
||||||
|
|
||||||
# Create ga object function
|
# Create ga object function
|
||||||
global ga_target_name
|
global ga_target_name
|
||||||
@ -573,18 +590,18 @@ class BacktestingEngine:
|
|||||||
toolbox.register("individual", tools.initIterate, creator.Individual, generate_parameter)
|
toolbox.register("individual", tools.initIterate, creator.Individual, generate_parameter)
|
||||||
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
||||||
toolbox.register("mate", tools.cxTwoPoint)
|
toolbox.register("mate", tools.cxTwoPoint)
|
||||||
toolbox.register("mutate", tools.mutUniformInt, low=4, up=40, indpb=1)
|
toolbox.register("mutate", mutate_individual, indpb=1)
|
||||||
toolbox.register("evaluate", ga_optimize)
|
toolbox.register("evaluate", ga_optimize)
|
||||||
toolbox.register("select", tools.selNSGA2)
|
toolbox.register("select", tools.selNSGA2)
|
||||||
|
|
||||||
total_size = len(settings)
|
total_size = len(settings)
|
||||||
pop_size = int(pow(total_size, 1 / math.e)) # number of individuals in each generation
|
pop_size = population_size # number of individuals in each generation
|
||||||
lambda_ = pop_size # number of children to produce at each generation
|
lambda_ = pop_size # number of children to produce at each generation
|
||||||
mu = int(pop_size * 0.8) # number of individuals to select for the next generation
|
mu = int(pop_size * 0.8) # number of individuals to select for the next generation
|
||||||
|
|
||||||
cxpb = 0.95 # probability that an offspring is produced by crossover
|
cxpb = 0.95 # probability that an offspring is produced by crossover
|
||||||
mutpb = 1 - cxpb # probability that an offspring is produced by mutation
|
mutpb = 1 - cxpb # probability that an offspring is produced by mutation
|
||||||
ngen = 30 # number of generation
|
ngen = ngen_size # number of generation
|
||||||
|
|
||||||
pop = toolbox.population(pop_size)
|
pop = toolbox.population(pop_size)
|
||||||
hof = tools.ParetoFront() # end result of pareto front
|
hof = tools.ParetoFront() # end result of pareto front
|
||||||
@ -629,10 +646,9 @@ class BacktestingEngine:
|
|||||||
|
|
||||||
# Return result list
|
# Return result list
|
||||||
results = []
|
results = []
|
||||||
parameter_keys = list(ga_setting.keys())
|
|
||||||
|
|
||||||
for parameter_values in hof:
|
for parameter_values in hof:
|
||||||
setting = dict(zip(parameter_keys, parameter_values))
|
setting = dict(parameter_values)
|
||||||
target_value = ga_optimize(parameter_values)[0]
|
target_value = ga_optimize(parameter_values)[0]
|
||||||
results.append((setting, target_value, {}))
|
results.append((setting, target_value, {}))
|
||||||
|
|
||||||
@ -1094,10 +1110,9 @@ def optimize(
|
|||||||
|
|
||||||
|
|
||||||
@lru_cache(maxsize=1000000)
|
@lru_cache(maxsize=1000000)
|
||||||
def _ga_optimizae(parameter_values: tuple):
|
def _ga_optimize(parameter_values: tuple):
|
||||||
""""""
|
""""""
|
||||||
parameter_keys = list(ga_setting.keys())
|
setting = dict(parameter_values)
|
||||||
setting = dict(zip(parameter_keys, parameter_values))
|
|
||||||
|
|
||||||
result = optimize(
|
result = optimize(
|
||||||
ga_target_name,
|
ga_target_name,
|
||||||
@ -1119,7 +1134,7 @@ def _ga_optimizae(parameter_values: tuple):
|
|||||||
|
|
||||||
def ga_optimize(parameter_values: list):
|
def ga_optimize(parameter_values: list):
|
||||||
""""""
|
""""""
|
||||||
return _ga_optimizae(tuple(parameter_values))
|
return _ga_optimize(tuple(parameter_values))
|
||||||
|
|
||||||
|
|
||||||
@lru_cache(maxsize=10)
|
@lru_cache(maxsize=10)
|
||||||
|
Loading…
Reference in New Issue
Block a user