[Del]remove talib from vnpy source code

This commit is contained in:
vn.py 2019-03-28 13:54:23 +08:00
parent cd716b4da8
commit 4474e12e39
11 changed files with 1 additions and 1028 deletions

View File

@ -1,265 +0,0 @@
import atexit
from itertools import chain
from functools import wraps
# If pandas is available, wrap talib functions so that they support
# pandas.Series input
try:
from pandas import Series as _pd_Series
except ImportError:
# pandas not available, nothing to wrap
_pandas_wrapper = lambda x: x
else:
def _pandas_wrapper(func):
@wraps(func)
def wrapper(*args, **kwargs):
try:
# Get the index of the first Series object, if any
index = next(arg.index
for arg in chain(args, kwargs.values())
if isinstance(arg, _pd_Series))
except StopIteration:
# No pandas.Series passed in; short-circuit
return func(*args, **kwargs)
# Use Series' float64 values if pandas, else use values as passed
args = [arg.values.astype(float) if isinstance(arg, _pd_Series) else arg
for arg in args]
kwargs = {k: v.values.astype(float) if isinstance(v, _pd_Series) else v
for k, v in kwargs.items()}
result = func(*args, **kwargs)
# Series was passed in, Series gets out; re-apply index
if isinstance(result, tuple):
# Handle multi-array results such as BBANDS
return tuple(_pd_Series(arr, index=index)
for arr in result)
return _pd_Series(result, index=index)
return wrapper
from ._ta_lib import (
_ta_initialize, _ta_shutdown, MA_Type, __ta_version__,
_ta_set_unstable_period as set_unstable_period,
_ta_get_unstable_period as get_unstable_period,
__TA_FUNCTION_NAMES__
)
func = __import__("_ta_lib", globals(), locals(), __TA_FUNCTION_NAMES__, level=1)
for func_name in __TA_FUNCTION_NAMES__:
wrapped_func = _pandas_wrapper(getattr(func, func_name))
setattr(func, func_name, wrapped_func)
globals()[func_name] = wrapped_func
__version__ = '0.4.17'
# In order to use this python library, talib (i.e. this __file__) will be
# imported at some point, either explicitly or indirectly via talib.func
# or talib.abstract. Here, we handle initalizing and shutting down the
# underlying TA-Lib. Initialization happens on import, before any other TA-Lib
# functions are called. Finally, when the python process exits, we shutdown
# the underlying TA-Lib.
_ta_initialize()
atexit.register(_ta_shutdown)
__function_groups__ = {
'Cycle Indicators': [
'HT_DCPERIOD',
'HT_DCPHASE',
'HT_PHASOR',
'HT_SINE',
'HT_TRENDMODE',
],
'Math Operators': [
'ADD',
'DIV',
'MAX',
'MAXINDEX',
'MIN',
'MININDEX',
'MINMAX',
'MINMAXINDEX',
'MULT',
'SUB',
'SUM',
],
'Math Transform': [
'ACOS',
'ASIN',
'ATAN',
'CEIL',
'COS',
'COSH',
'EXP',
'FLOOR',
'LN',
'LOG10',
'SIN',
'SINH',
'SQRT',
'TAN',
'TANH',
],
'Momentum Indicators': [
'ADX',
'ADXR',
'APO',
'AROON',
'AROONOSC',
'BOP',
'CCI',
'CMO',
'DX',
'MACD',
'MACDEXT',
'MACDFIX',
'MFI',
'MINUS_DI',
'MINUS_DM',
'MOM',
'PLUS_DI',
'PLUS_DM',
'PPO',
'ROC',
'ROCP',
'ROCR',
'ROCR100',
'RSI',
'STOCH',
'STOCHF',
'STOCHRSI',
'TRIX',
'ULTOSC',
'WILLR',
],
'Overlap Studies': [
'BBANDS',
'DEMA',
'EMA',
'HT_TRENDLINE',
'KAMA',
'MA',
'MAMA',
'MAVP',
'MIDPOINT',
'MIDPRICE',
'SAR',
'SAREXT',
'SMA',
'T3',
'TEMA',
'TRIMA',
'WMA',
],
'Pattern Recognition': [
'CDL2CROWS',
'CDL3BLACKCROWS',
'CDL3INSIDE',
'CDL3LINESTRIKE',
'CDL3OUTSIDE',
'CDL3STARSINSOUTH',
'CDL3WHITESOLDIERS',
'CDLABANDONEDBABY',
'CDLADVANCEBLOCK',
'CDLBELTHOLD',
'CDLBREAKAWAY',
'CDLCLOSINGMARUBOZU',
'CDLCONCEALBABYSWALL',
'CDLCOUNTERATTACK',
'CDLDARKCLOUDCOVER',
'CDLDOJI',
'CDLDOJISTAR',
'CDLDRAGONFLYDOJI',
'CDLENGULFING',
'CDLEVENINGDOJISTAR',
'CDLEVENINGSTAR',
'CDLGAPSIDESIDEWHITE',
'CDLGRAVESTONEDOJI',
'CDLHAMMER',
'CDLHANGINGMAN',
'CDLHARAMI',
'CDLHARAMICROSS',
'CDLHIGHWAVE',
'CDLHIKKAKE',
'CDLHIKKAKEMOD',
'CDLHOMINGPIGEON',
'CDLIDENTICAL3CROWS',
'CDLINNECK',
'CDLINVERTEDHAMMER',
'CDLKICKING',
'CDLKICKINGBYLENGTH',
'CDLLADDERBOTTOM',
'CDLLONGLEGGEDDOJI',
'CDLLONGLINE',
'CDLMARUBOZU',
'CDLMATCHINGLOW',
'CDLMATHOLD',
'CDLMORNINGDOJISTAR',
'CDLMORNINGSTAR',
'CDLONNECK',
'CDLPIERCING',
'CDLRICKSHAWMAN',
'CDLRISEFALL3METHODS',
'CDLSEPARATINGLINES',
'CDLSHOOTINGSTAR',
'CDLSHORTLINE',
'CDLSPINNINGTOP',
'CDLSTALLEDPATTERN',
'CDLSTICKSANDWICH',
'CDLTAKURI',
'CDLTASUKIGAP',
'CDLTHRUSTING',
'CDLTRISTAR',
'CDLUNIQUE3RIVER',
'CDLUPSIDEGAP2CROWS',
'CDLXSIDEGAP3METHODS',
],
'Price Transform': [
'AVGPRICE',
'MEDPRICE',
'TYPPRICE',
'WCLPRICE',
],
'Statistic Functions': [
'BETA',
'CORREL',
'LINEARREG',
'LINEARREG_ANGLE',
'LINEARREG_INTERCEPT',
'LINEARREG_SLOPE',
'STDDEV',
'TSF',
'VAR',
],
'Volatility Indicators': [
'ATR',
'NATR',
'TRANGE',
],
'Volume Indicators': [
'AD',
'ADOSC',
'OBV'
],
}
def get_functions():
"""
Returns a list of all the functions supported by TALIB
"""
ret = []
for group in __function_groups__:
ret.extend(__function_groups__[group])
return ret
def get_function_groups():
"""
Returns a dict with keys of function-group names and values of lists
of function names ie {'group_names': ['function_names']}
"""
return __function_groups__.copy()
__all__ = ['get_functions', 'get_function_groups']

View File

@ -1,27 +0,0 @@
import talib._ta_lib as _ta_lib
from ._ta_lib import Function as _Function, __TA_FUNCTION_NAMES__, _get_defaults_and_docs
# add some backwards compat for backtrader
from ._ta_lib import TA_FUNC_FLAGS, TA_INPUT_FLAGS, TA_OUTPUT_FLAGS
_func_obj_mapping = {
func_name: getattr(_ta_lib, func_name)
for func_name in __TA_FUNCTION_NAMES__
}
def Function(function_name, *args, **kwargs):
func_name = function_name.upper()
if func_name not in _func_obj_mapping:
raise Exception('%s not supported by TA-LIB.' % func_name)
return _Function(
func_name, _func_obj_mapping[func_name], *args, **kwargs
)
for func_name in __TA_FUNCTION_NAMES__:
globals()[func_name] = Function(func_name)
__all__ = ["Function", "_get_defaults_and_docs"] + __TA_FUNCTION_NAMES__

View File

@ -1,2 +0,0 @@
# TA_MAType enums
MA_SMA, MA_EMA, MA_WMA, MA_DEMA, MA_TEMA, MA_TRIMA, MA_KAMA, MA_MAMA, MA_T3 = range(9)

View File

@ -1,6 +0,0 @@
import talib._ta_lib as _ta_lib
from ._ta_lib import __TA_FUNCTION_NAMES__
for func_name in __TA_FUNCTION_NAMES__:
globals()[func_name] = getattr(_ta_lib, "stream_%s" % func_name)

View File

@ -1,257 +0,0 @@
import numpy as np
from nose.tools import (
assert_equals,
assert_true,
assert_false,
assert_raises,
)
try:
from collections import OrderedDict
except ImportError: # handle python 2.6 and earlier
from ordereddict import OrderedDict
import talib
from talib import func
from talib import abstract
from talib.test_data import ford_2012, assert_np_arrays_equal, assert_np_arrays_not_equal
def test_pandas():
import pandas
input_df = pandas.DataFrame(ford_2012)
input_dict = dict((k, pandas.Series(v)) for k, v in ford_2012.items())
expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close']) # 5, 3, 0, 3, 0
output = abstract.Function('stoch', input_df).outputs
assert_true(isinstance(output, pandas.DataFrame))
assert_np_arrays_equal(expected_k, output['slowk'])
assert_np_arrays_equal(expected_d, output['slowd'])
output = abstract.Function('stoch', input_dict).outputs
assert_true(isinstance(output, list))
assert_np_arrays_equal(expected_k, output[0])
assert_np_arrays_equal(expected_d, output[1])
expected = func.SMA(ford_2012['close'], 10)
output = abstract.Function('sma', input_df, 10).outputs
assert_true(isinstance(output, pandas.Series))
assert_np_arrays_equal(expected, output)
output = abstract.Function('sma', input_dict, 10).outputs
assert_true(isinstance(output, np.ndarray))
assert_np_arrays_equal(expected, output)
def test_pandas_series():
import pandas
input_df = pandas.DataFrame(ford_2012)
output = talib.SMA(input_df['close'], 10)
expected = pandas.Series(func.SMA(ford_2012['close'], 10),
index=input_df.index)
pandas.util.testing.assert_series_equal(output, expected)
# Test kwargs
output = talib.SMA(real=input_df['close'], timeperiod=10)
pandas.util.testing.assert_series_equal(output, expected)
# Test talib.func API
output = func.SMA(input_df['close'], timeperiod=10)
pandas.util.testing.assert_series_equal(output, expected)
# Test multiple outputs such as from BBANDS
_, output, _ = talib.BBANDS(input_df['close'], 10)
expected = pandas.Series(func.BBANDS(ford_2012['close'], 10)[1],
index=input_df.index)
pandas.util.testing.assert_series_equal(output, expected)
def test_SMA():
expected = func.SMA(ford_2012['close'], 10)
assert_np_arrays_equal(expected, abstract.Function('sma', ford_2012, 10).outputs)
assert_np_arrays_equal(expected, abstract.Function('sma')(ford_2012, 10, price='close'))
assert_np_arrays_equal(expected, abstract.Function('sma')(ford_2012, timeperiod=10))
expected = func.SMA(ford_2012['open'], 10)
assert_np_arrays_equal(expected, abstract.Function('sma', ford_2012, 10, price='open').outputs)
assert_np_arrays_equal(expected, abstract.Function('sma', price='low')(ford_2012, 10, price='open'))
assert_np_arrays_not_equal(expected, abstract.Function('sma', ford_2012, 10, price='open')(timeperiod=20))
assert_np_arrays_not_equal(expected, abstract.Function('sma', ford_2012)(10, price='close'))
assert_np_arrays_not_equal(expected, abstract.Function('sma', 10)(ford_2012, price='high'))
assert_np_arrays_not_equal(expected, abstract.Function('sma', price='low')(ford_2012, 10))
input_arrays = {'foobarbaz': ford_2012['open']}
assert_np_arrays_equal(expected, abstract.SMA(input_arrays, 10, price='foobarbaz'))
def test_STOCH():
# check defaults match
expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close']) # 5, 3, 0, 3, 0
got_k, got_d = abstract.Function('stoch', ford_2012).outputs
assert_np_arrays_equal(expected_k, got_k)
assert_np_arrays_equal(expected_d, got_d)
expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close'])
got_k, got_d = abstract.Function('stoch', ford_2012)(5, 3, 0, 3, 0)
assert_np_arrays_equal(expected_k, got_k)
assert_np_arrays_equal(expected_d, got_d)
expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close'], 15)
got_k, got_d = abstract.Function('stoch', ford_2012)(15, 5, 0, 5, 0)
assert_np_arrays_not_equal(expected_k, got_k)
assert_np_arrays_not_equal(expected_d, got_d)
expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close'], 15, 5, 1, 5, 1)
got_k, got_d = abstract.Function('stoch', ford_2012)(15, 5, 1, 5, 1)
assert_np_arrays_equal(expected_k, got_k)
assert_np_arrays_equal(expected_d, got_d)
def test_doji_candle():
expected = func.CDLDOJI(ford_2012['open'], ford_2012['high'], ford_2012['low'], ford_2012['close'])
got = abstract.Function('CDLDOJI').run(ford_2012)
assert_np_arrays_equal(got, expected)
def test_MAVP():
mavp = abstract.MAVP
assert_raises(Exception, mavp.set_input_arrays, ford_2012)
input_d = {}
input_d['close'] = ford_2012['close']
input_d['periods'] = np.arange(30)
assert_true(mavp.set_input_arrays(input_d))
assert_equals(mavp.input_arrays, input_d)
def test_info():
stochrsi = abstract.Function('STOCHRSI')
stochrsi.input_names = {'price': 'open'}
stochrsi.parameters = {'fastd_matype': talib.MA_Type.EMA}
expected = {
'display_name': 'Stochastic Relative Strength Index',
'function_flags': ['Function has an unstable period'],
'group': 'Momentum Indicators',
'input_names': OrderedDict([('price', 'open')]),
'name': 'STOCHRSI',
'output_flags': OrderedDict([
('fastk', ['Line']),
('fastd', ['Line']),
]),
'output_names': ['fastk', 'fastd'],
'parameters': OrderedDict([
('timeperiod', 14),
('fastk_period', 5),
('fastd_period', 3),
('fastd_matype', 1),
]),
}
assert_equals(expected, stochrsi.info)
expected = {
'display_name': 'Bollinger Bands',
'function_flags': ['Output scale same as input'],
'group': 'Overlap Studies',
'input_names': OrderedDict([('price', 'close')]),
'name': 'BBANDS',
'output_flags': OrderedDict([
('upperband', ['Values represent an upper limit']),
('middleband', ['Line']),
('lowerband', ['Values represent a lower limit']),
]),
'output_names': ['upperband', 'middleband', 'lowerband'],
'parameters': OrderedDict([
('timeperiod', 5),
('nbdevup', 2),
('nbdevdn', 2),
('matype', 0),
]),
}
assert_equals(expected, abstract.Function('BBANDS').info)
def test_input_names():
expected = OrderedDict([('price', 'close')])
assert_equals(expected, abstract.Function('MAMA').input_names)
# test setting input_names
obv = abstract.Function('OBV')
expected = OrderedDict([
('price', 'open'),
('prices', ['volume']),
])
obv.input_names = expected
assert_equals(obv.input_names, expected)
obv.input_names = {
'price': 'open',
'prices': ['volume'],
}
assert_equals(obv.input_names, expected)
def test_input_arrays():
mama = abstract.Function('MAMA')
# test default setting
expected = {
'open': None,
'high': None,
'low': None,
'close': None,
'volume': None,
}
assert_equals(expected, mama.get_input_arrays())
# test setting/getting input_arrays
assert_true(mama.set_input_arrays(ford_2012))
assert_equals(mama.get_input_arrays(), ford_2012)
assert_raises(Exception,
mama.set_input_arrays, {'hello': 'fail', 'world': 'bye'})
# test only required keys are needed
willr = abstract.Function('WILLR')
reqd = willr.input_names['prices']
input_d = dict([(key, ford_2012[key]) for key in reqd])
assert_true(willr.set_input_arrays(input_d))
assert_equals(willr.input_arrays, input_d)
# test extraneous keys are ignored
input_d['extra_stuffs'] = 'you should never see me'
input_d['date'] = np.random.rand(100)
assert_true(willr.set_input_arrays(input_d))
# test missing keys get detected
input_d['open'] = ford_2012['open']
input_d.pop('close')
assert_raises(Exception, willr.set_input_arrays, input_d)
# test changing input_names on the Function
willr.input_names = {'prices': ['high', 'low', 'open']}
assert_true(willr.set_input_arrays(input_d))
def test_parameters():
stoch = abstract.Function('STOCH')
expected = OrderedDict([
('fastk_period', 5),
('slowk_period', 3),
('slowk_matype', 0),
('slowd_period', 3),
('slowd_matype', 0),
])
assert_equals(expected, stoch.parameters)
stoch.parameters = {'fastk_period': 10}
expected['fastk_period'] = 10
assert_equals(expected, stoch.parameters)
stoch.parameters = {'slowk_period': 8, 'slowd_period': 5}
expected['slowk_period'] = 8
expected['slowd_period'] = 5
assert_equals(expected, stoch.parameters)
stoch.parameters = {'slowd_matype': talib.MA_Type.T3}
expected['slowd_matype'] = 8
assert_equals(expected, stoch.parameters)
stoch.parameters = {
'slowk_matype': talib.MA_Type.WMA,
'slowd_matype': talib.MA_Type.EMA,
}
expected['slowk_matype'] = 2
expected['slowd_matype'] = 1
assert_equals(expected, stoch.parameters)
def test_lookback():
assert_equals(abstract.Function('SMA', 10).lookback, 9)
stochrsi = abstract.Function('stochrsi', 20, 5, 3)
assert_equals(stochrsi.lookback, 26)

View File

@ -1,242 +0,0 @@
from __future__ import print_function
import numpy as np
from nose.tools import assert_equal, assert_not_equal, assert_true
ford_2012_dates = np.asarray([ 20120103, 20120104, 20120105, 20120106, 20120109,
20120110, 20120111, 20120112, 20120113, 20120117, 20120118, 20120119,
20120120, 20120123, 20120124, 20120125, 20120126, 20120127, 20120130,
20120131, 20120201, 20120202, 20120203, 20120206, 20120207, 20120208,
20120209, 20120210, 20120213, 20120214, 20120215, 20120216, 20120217,
20120221, 20120222, 20120223, 20120224, 20120227, 20120228, 20120229,
20120301, 20120302, 20120305, 20120306, 20120307, 20120308, 20120309,
20120312, 20120313, 20120314, 20120315, 20120316, 20120319, 20120320,
20120321, 20120322, 20120323, 20120326, 20120327, 20120328, 20120329,
20120330, 20120402, 20120403, 20120404, 20120405, 20120409, 20120410,
20120411, 20120412, 20120413, 20120416, 20120417, 20120418, 20120419,
20120420, 20120423, 20120424, 20120425, 20120426, 20120427, 20120430,
20120501, 20120502, 20120503, 20120504, 20120507, 20120508, 20120509,
20120510, 20120511, 20120514, 20120515, 20120516, 20120517, 20120518,
20120521, 20120522, 20120523, 20120524, 20120525, 20120529, 20120530,
20120531, 20120601, 20120604, 20120605, 20120606, 20120607, 20120608,
20120611, 20120612, 20120613, 20120614, 20120615, 20120618, 20120619,
20120620, 20120621, 20120622, 20120625, 20120626, 20120627, 20120628,
20120629, 20120702, 20120703, 20120705, 20120706, 20120709, 20120710,
20120711, 20120712, 20120713, 20120716, 20120717, 20120718, 20120719,
20120720, 20120723, 20120724, 20120725, 20120726, 20120727, 20120730,
20120731, 20120801, 20120802, 20120803, 20120806, 20120807, 20120808,
20120809, 20120810, 20120813, 20120814, 20120815, 20120816, 20120817,
20120820, 20120821, 20120822, 20120823, 20120824, 20120827, 20120828,
20120829, 20120830, 20120831, 20120904, 20120905, 20120906, 20120907,
20120910, 20120911, 20120912, 20120913, 20120914, 20120917, 20120918,
20120919, 20120920, 20120921, 20120924, 20120925, 20120926, 20120927,
20120928, 20121001, 20121002, 20121003, 20121004, 20121005, 20121008,
20121009, 20121010, 20121011, 20121012, 20121015, 20121016, 20121017,
20121018, 20121019, 20121022, 20121023, 20121024, 20121025, 20121026,
20121031, 20121101, 20121102, 20121105, 20121106, 20121107, 20121108,
20121109, 20121112, 20121113, 20121114, 20121115, 20121116, 20121119,
20121120, 20121121, 20121123, 20121126, 20121127, 20121128, 20121129,
20121130, 20121203, 20121204, 20121205, 20121206, 20121207, 20121210,
20121211, 20121212, 20121213, 20121214, 20121217, 20121218, 20121219,
20121220, 20121221, 20121224, 20121226, 20121227, 20121228, 20121231 ])
ford_2012 = {
'open': np.asarray([ 11.00, 11.15, 11.33, 11.74, 11.83, 12.00, 11.74, 12.16,
12.01, 12.20, 12.03, 12.48, 12.55, 12.69, 12.56, 12.80, 13.03, 11.96,
12.06, 12.47, 12.73, 12.40, 12.47, 12.85, 12.93, 12.91, 12.89, 12.52,
12.74, 12.46, 12.47, 12.38, 12.84, 12.74, 12.49, 12.27, 12.43, 12.11,
12.34, 12.28, 12.48, 12.74, 12.67, 12.23, 12.21, 12.41, 12.53, 12.57,
12.48, 12.64, 12.90, 12.86, 12.52, 12.48, 12.59, 12.48, 12.31, 12.45,
12.51, 12.35, 12.33, 12.55, 12.50, 12.71, 12.46, 12.38, 12.26, 12.19,
11.99, 11.94, 11.98, 12.01, 11.98, 11.81, 11.81, 11.71, 11.15, 11.61,
11.51, 11.71, 12.03, 11.42, 11.25, 11.16, 11.13, 10.84, 10.53, 10.60,
10.48, 10.83, 10.61, 10.41, 10.34, 10.23, 10.16, 10.08, 10.02, 10.25,
10.32, 10.50, 10.61, 10.69, 10.73, 10.62, 10.33, 10.15, 10.01, 10.29,
10.73, 10.48, 10.77, 10.47, 10.39, 10.27, 10.40, 10.35, 10.37, 10.58,
10.65, 10.35, 10.13, 10.06, 10.05, 9.93, 9.95, 9.50, 9.53, 9.67, 9.47,
9.46, 9.50, 9.33, 9.26, 9.16, 9.22, 9.28, 9.38, 9.45, 9.28, 9.08, 9.17,
9.17, 9.05, 8.99, 9.04, 9.13, 9.29, 8.99, 9.02, 9.13, 9.18, 9.25, 9.31,
9.30, 9.35, 9.45, 9.44, 9.50, 9.65, 9.58, 9.65, 9.50, 9.45, 9.42, 9.51,
9.37, 9.33, 9.30, 9.39, 9.37, 9.45, 9.66, 9.95, 10.08, 10.18, 10.25,
10.20, 10.41, 10.27, 10.30, 10.49, 10.48, 10.53, 10.30, 10.35, 9.98,
10.13, 9.99, 9.89, 10.01, 9.82, 10.06, 10.17, 10.06, 10.21, 10.12,
10.06, 10.14, 10.11, 10.26, 10.31, 10.36, 10.42, 10.14, 10.02, 10.08,
10.42, 10.35, 10.70, 11.19, 11.31, 11.15, 11.33, 11.25, 11.07, 10.76,
11.03, 10.89, 11.02, 10.57, 10.58, 10.65, 10.85, 10.84, 10.98, 11.05,
11.10, 11.05, 11.32, 11.52, 11.56, 11.40, 11.32, 11.26, 11.27, 11.41,
11.51, 11.52, 11.46, 11.27, 11.16, 11.48, 11.79, 11.74, 11.55, 11.67,
12.31, 12.79, 12.55, 12.88, ]),
'high': np.asarray([ 11.25, 11.53, 11.63, 11.80, 11.95, 12.05, 12.18, 12.18,
12.08, 12.26, 12.37, 12.72, 12.64, 12.84, 12.86, 12.98, 13.05, 12.53,
12.44, 12.51, 12.75, 12.43, 12.84, 13.00, 12.97, 12.96, 12.90, 12.66,
12.74, 12.58, 12.57, 12.77, 12.88, 12.76, 12.51, 12.44, 12.46, 12.36,
12.35, 12.55, 12.77, 12.94, 12.68, 12.25, 12.30, 12.55, 12.73, 12.59,
12.72, 12.90, 13.04, 12.90, 12.68, 12.61, 12.67, 12.54, 12.37, 12.50,
12.61, 12.36, 12.52, 12.58, 12.65, 12.95, 12.52, 12.58, 12.29, 12.28,
12.02, 12.13, 12.03, 12.05, 12.00, 11.85, 11.88, 11.72, 11.40, 11.61,
11.75, 11.93, 12.04, 11.47, 11.34, 11.17, 11.15, 10.87, 10.79, 10.64,
10.81, 10.86, 10.83, 10.53, 10.34, 10.43, 10.25, 10.18, 10.23, 10.40,
10.45, 10.62, 10.68, 10.88, 10.75, 10.68, 10.37, 10.18, 10.24, 10.58,
10.78, 10.68, 10.80, 10.55, 10.49, 10.45, 10.42, 10.40, 10.64, 10.74,
10.68, 10.40, 10.18, 10.08, 10.10, 10.09, 9.98, 9.60, 9.79, 9.74, 9.52,
9.47, 9.55, 9.38, 9.28, 9.32, 9.32, 9.35, 9.52, 9.50, 9.35, 9.21, 9.24,
9.20, 9.11, 9.10, 9.18, 9.28, 9.42, 9.03, 9.15, 9.21, 9.39, 9.38, 9.46,
9.36, 9.42, 9.66, 9.54, 9.67, 9.66, 9.64, 9.70, 9.56, 9.54, 9.52, 9.52,
9.44, 9.40, 9.34, 9.43, 9.47, 9.62, 9.96, 10.23, 10.28, 10.25, 10.30,
10.38, 10.57, 10.42, 10.45, 10.66, 10.52, 10.54, 10.40, 10.37, 10.12,
10.18, 10.00, 10.08, 10.05, 10.02, 10.15, 10.28, 10.12, 10.25, 10.12,
10.26, 10.25, 10.25, 10.32, 10.41, 10.57, 10.43, 10.24, 10.11, 10.29,
10.49, 10.42, 11.17, 11.30, 11.38, 11.35, 11.59, 11.34, 11.23, 11.10,
11.16, 11.10, 11.05, 10.80, 10.64, 10.90, 11.02, 11.00, 11.10, 11.14,
11.27, 11.26, 11.53, 11.60, 11.70, 11.44, 11.40, 11.31, 11.50, 11.53,
11.58, 11.56, 11.50, 11.27, 11.41, 11.68, 11.85, 11.80, 11.86, 12.40,
12.79, 12.81, 12.88, 13.08, ]),
'low': np.asarray([ 10.99, 11.07, 11.24, 11.52, 11.70, 11.63, 11.65, 11.89,
11.84, 11.96, 12.00, 12.43, 12.45, 12.55, 12.46, 12.70, 12.66, 11.79,
12.00, 12.20, 12.29, 12.20, 12.39, 12.71, 12.83, 12.80, 12.67, 12.37,
12.51, 12.34, 12.33, 12.38, 12.71, 12.46, 12.22, 12.16, 12.19, 11.99,
12.20, 12.25, 12.45, 12.68, 12.41, 12.00, 12.15, 12.32, 12.48, 12.37,
12.40, 12.63, 12.83, 12.51, 12.48, 12.39, 12.55, 12.24, 12.18, 12.39,
12.30, 12.18, 12.24, 12.40, 12.44, 12.46, 12.32, 12.38, 12.11, 11.65,
11.88, 11.86, 11.84, 11.83, 11.88, 11.72, 11.58, 11.39, 11.15, 11.36,
11.43, 11.67, 11.52, 11.15, 11.11, 11.00, 10.85, 10.63, 10.52, 10.40,
10.41, 10.66, 10.56, 10.30, 10.10, 10.15, 10.01, 9.96, 10.00, 10.15,
10.22, 10.38, 10.51, 10.68, 10.52, 10.40, 10.06, 9.91, 9.97, 10.27,
10.52, 10.38, 10.45, 10.31, 10.22, 10.21, 10.26, 10.26, 10.35, 10.52,
10.25, 10.18, 9.95, 9.96, 9.97, 9.93, 9.46, 9.30, 9.49, 9.53, 9.40,
9.31, 9.28, 9.26, 9.12, 9.14, 9.15, 9.12, 9.34, 9.33, 9.18, 9.05, 8.95,
8.91, 8.83, 8.88, 9.01, 9.12, 8.99, 8.82, 8.96, 9.09, 9.18, 9.24, 9.30,
9.23, 9.25, 9.42, 9.41, 9.49, 9.60, 9.51, 9.52, 9.40, 9.42, 9.41, 9.38,
9.31, 9.29, 9.25, 9.31, 9.35, 9.39, 9.66, 9.93, 10.06, 10.13, 10.17,
10.12, 10.39, 10.26, 10.28, 10.45, 10.35, 10.36, 10.26, 10.06, 9.86,
10.02, 9.81, 9.88, 9.71, 9.76, 9.96, 10.13, 9.99, 10.02, 9.95, 10.05,
10.09, 10.09, 10.22, 10.26, 10.33, 10.13, 10.03, 9.97, 10.01, 10.28,
10.22, 10.60, 10.88, 11.15, 11.13, 11.26, 11.04, 10.89, 10.71, 10.96,
10.86, 10.62, 10.46, 10.38, 10.65, 10.76, 10.80, 10.96, 10.97, 11.10,
10.98, 11.32, 11.33, 11.40, 11.23, 11.18, 11.19, 11.26, 11.41, 11.40,
11.43, 11.21, 11.03, 11.14, 11.40, 11.62, 11.58, 11.47, 11.67, 12.31,
12.36, 12.52, 12.76, ]),
'close': np.asarray([ 11.13, 11.30, 11.59, 11.71, 11.80, 11.80, 12.07, 12.14,
12.04, 12.02, 12.34, 12.61, 12.59, 12.66, 12.82, 12.93, 12.79, 12.21,
12.29, 12.42, 12.33, 12.26, 12.79, 12.96, 12.88, 12.84, 12.69, 12.44,
12.54, 12.48, 12.38, 12.74, 12.75, 12.53, 12.28, 12.40, 12.23, 12.30,
12.25, 12.38, 12.66, 12.72, 12.46, 12.09, 12.24, 12.46, 12.58, 12.43,
12.70, 12.88, 12.90, 12.51, 12.63, 12.54, 12.57, 12.32, 12.32, 12.48,
12.32, 12.32, 12.50, 12.48, 12.62, 12.64, 12.51, 12.47, 12.22, 11.79,
11.91, 12.07, 11.92, 11.88, 11.91, 11.79, 11.66, 11.41, 11.35, 11.39,
11.73, 11.87, 11.60, 11.28, 11.23, 11.10, 10.92, 10.67, 10.66, 10.61,
10.69, 10.71, 10.58, 10.32, 10.15, 10.16, 10.01, 10.01, 10.20, 10.19,
10.41, 10.59, 10.60, 10.84, 10.66, 10.56, 10.12, 10.04, 10.19, 10.57,
10.55, 10.66, 10.45, 10.50, 10.30, 10.41, 10.35, 10.34, 10.56, 10.65,
10.27, 10.19, 10.01, 10.01, 10.02, 10.09, 9.59, 9.39, 9.60, 9.57, 9.50,
9.45, 9.35, 9.33, 9.13, 9.27, 9.26, 9.34, 9.38, 9.35, 9.21, 9.17, 9.06,
8.97, 8.96, 9.00, 9.10, 9.24, 9.04, 8.92, 9.09, 9.15, 9.31, 9.35, 9.34,
9.35, 9.40, 9.44, 9.49, 9.59, 9.63, 9.63, 9.53, 9.49, 9.45, 9.49, 9.39,
9.34, 9.32, 9.31, 9.34, 9.41, 9.57, 9.92, 10.14, 10.11, 10.15, 10.21,
10.34, 10.53, 10.39, 10.42, 10.59, 10.44, 10.40, 10.32, 10.09, 10.01,
10.02, 9.86, 9.93, 9.79, 9.94, 10.11, 10.16, 10.05, 10.10, 9.98, 10.14,
10.12, 10.22, 10.30, 10.41, 10.43, 10.18, 10.17, 10.00, 10.17, 10.39,
10.36, 11.16, 11.25, 11.17, 11.25, 11.42, 11.06, 10.90, 10.93, 10.97,
11.00, 10.67, 10.57, 10.50, 10.83, 10.85, 10.92, 11.10, 11.11, 11.10,
11.25, 11.53, 11.45, 11.41, 11.31, 11.31, 11.24, 11.48, 11.47, 11.49,
11.47, 11.27, 11.10, 11.39, 11.67, 11.73, 11.77, 11.86, 12.40, 12.79,
12.76, 12.87, 12.95, ]),
'volume': np.asarray([ 45709900, 79725200, 67877500, 59840700, 53981500,
121750600, 63806000, 48687700, 46366700, 44398400, 47102700, 70894200,
43705700, 49379700, 45768400, 54021600, 75470700, 142155300, 57752600,
46412100, 71669000, 48347600, 78851200, 46363300, 39413500, 35352500,
52290500, 52505500, 34474400, 39627900, 38174800, 49164400, 30778000,
38409800, 43326000, 36747600, 31399300, 38703400, 30789000, 62093700,
68262000, 49063500, 28433700, 57374500, 28440900, 37099100, 36159300,
30275700, 42783600, 47578500, 55286600, 77119600, 52445700, 40214400,
27521400, 50117100, 44755000, 26692200, 35070700, 41051700, 51039700,
36381000, 43966900, 97034200, 51505000, 37939500, 42515300, 77370300,
34724400, 26988800, 39675000, 31903500, 35981200, 32314000, 48169200,
52631000, 31269200, 38615200, 45185400, 40889300, 83070300, 46156300,
43959200, 48572900, 40238400, 53268400, 33235200, 46174500, 54501200,
42526100, 36561300, 50225200, 41886500, 44321300, 49648900, 50572000,
38134900, 44295700, 75647800, 45334100, 30430800, 43760600, 44592100,
54297000, 68237000, 57305600, 38326200, 50458000, 33846100, 30811600,
35811400, 35130800, 53471900, 37531800, 39442000, 27361000, 37155900,
40810100, 40062800, 56427300, 44297600, 31871900, 33278900, 38648400,
138138600, 63388600, 49629300, 31783900, 30355400, 37441600, 33516600,
32028700, 55111000, 30248300, 28838200, 29510000, 31010000, 33615000,
27968300, 33773800, 53519200, 44338200, 51798900, 67986800, 40958300,
41360900, 65973000, 45326500, 38631400, 23819100, 43574500, 22630300,
30909800, 19618800, 21122000, 21129500, 21308300, 34323700, 34533900,
38923800, 26281100, 26965500, 23537700, 19574600, 22754200, 23084400,
26115700, 16459400, 28029200, 37965000, 40608800, 67996400, 60617000,
43381300, 28165300, 28046500, 50920200, 55934300, 31922200, 34937000,
42403000, 28755100, 35459800, 28557900, 36866300, 44362600, 25740900,
44586300, 33445600, 63630000, 51023800, 46855500, 40693900, 25473900,
38235700, 33951600, 39328700, 24108500, 26466500, 32788400, 29346300,
44041700, 40493000, 39149700, 32476500, 49339800, 59290900, 43485500,
137960900, 88770100, 53399000, 37995000, 51232200, 56674900, 45948800,
40703600, 25723100, 33342900, 45664700, 48879800, 45346200, 39359100,
34739800, 21181700, 16032200, 26831700, 37610000, 38496900, 57289300,
41329600, 47746300, 37760200, 33152400, 31065800, 38404500, 26025200,
36326900, 31099900, 35443200, 36933500, 46983300, 61810400, 54884700,
47750100, 94489300, 91734900, 140331900, 108315100, 95668600, 106908900 ]),
}
series = np.array([ 91.50, 94.81, 94.38, 95.09, 93.78, 94.62, 92.53, 92.75,
90.31, 92.47, 96.12, 97.25, 98.50, 89.88, 91.00, 92.81, 89.16, 89.34,
91.62, 89.88, 88.38, 87.62, 84.78, 83.00, 83.50, 81.38, 84.44, 89.25,
86.38, 86.25, 85.25, 87.12, 85.81, 88.97, 88.47, 86.88, 86.81, 84.88,
84.19, 83.88, 83.38, 85.50, 89.19, 89.44, 91.09, 90.75, 91.44, 89.00,
91.00, 90.50, 89.03, 88.81, 84.28, 83.50, 82.69, 84.75, 85.66, 86.19,
88.94, 89.28, 88.62, 88.50, 91.97, 91.50, 93.25, 93.50, 93.16, 91.72,
90.00, 89.69, 88.88, 85.19, 83.38, 84.88, 85.94, 97.25, 99.88, 104.94,
106.00, 102.50, 102.41, 104.59, 106.12, 106.00, 106.06, 104.62, 108.62,
109.31, 110.50, 112.75, 123.00, 119.62, 118.75, 119.25, 117.94, 116.44,
115.19, 111.88, 110.59, 118.12, 116.00, 116.00, 112.00, 113.75, 112.94,
116.00, 120.50, 116.62, 117.00, 115.25, 114.31, 115.50, 115.87, 120.69,
120.19, 120.75, 124.75, 123.37, 122.94, 122.56, 123.12, 122.56, 124.62,
129.25, 131.00, 132.25, 131.00, 132.81, 134.00, 137.38, 137.81, 137.88,
137.25, 136.31, 136.25, 134.63, 128.25, 129.00, 123.87, 124.81, 123.00,
126.25, 128.38, 125.37, 125.69, 122.25, 119.37, 118.50, 123.19, 123.50,
122.19, 119.31, 123.31, 121.12, 123.37, 127.37, 128.50, 123.87, 122.94,
121.75, 124.44, 122.00, 122.37, 122.94, 124.00, 123.19, 124.56, 127.25,
125.87, 128.86, 132.00, 130.75, 134.75, 135.00, 132.38, 133.31, 131.94,
130.00, 125.37, 130.13, 127.12, 125.19, 122.00, 125.00, 123.00, 123.50,
120.06, 121.00, 117.75, 119.87, 122.00, 119.19, 116.37, 113.50, 114.25,
110.00, 105.06, 107.00, 107.87, 107.00, 107.12, 107.00, 91.00, 93.94,
93.87, 95.50, 93.00, 94.94, 98.25, 96.75, 94.81, 94.37, 91.56, 90.25,
93.94, 93.62, 97.00, 95.00, 95.87, 94.06, 94.62, 93.75, 98.00, 103.94,
107.87, 106.06, 104.50, 105.00, 104.19, 103.06, 103.42, 105.27, 111.87,
116.00, 116.62, 118.28, 113.37, 109.00, 109.70, 109.25, 107.00, 109.19,
110.00, 109.20, 110.12, 108.00, 108.62, 109.75, 109.81, 109.00, 108.75,
107.87 ])
def assert_np_arrays_equal(expected, got):
for i, value in enumerate(expected):
if np.isnan(value):
assert_true(np.isnan(got[i]))
else:
assert_equal(value, got[i])
def assert_np_arrays_not_equal(expected, got):
''' Verifies expected and got have the same number of leading nan fields,
followed by different floats.
'''
nans = []
equals = []
for i, value in enumerate(expected):
if np.isnan(value):
assert_true(np.isnan(got[i]))
nans.append(value)
else:
try:
assert_not_equal(value, got[i])
except AssertionError:
equals.append(got[i])
if len(equals) == len(expected[len(nans):]):
raise AssertionError('Arrays were equal.')
elif equals:
print('Arrays had %i/%i equivalent values.' % (len(equals), len(expected[len(nans):])))

View File

@ -1,143 +0,0 @@
import numpy as np
from nose.tools import assert_equals, assert_true, assert_raises
import talib
from talib import func
from talib.test_data import series, assert_np_arrays_equal, assert_np_arrays_not_equal
def test_talib_version():
assert_equals(talib.__ta_version__[:5], b'0.4.0')
def test_num_functions():
assert_equals(len(talib.get_functions()), 158)
def test_input_lengths():
a1 = np.arange(10, dtype=float)
a2 = np.arange(11, dtype=float)
with assert_raises(Exception):
func.BOP(a2, a1, a1, a1)
with assert_raises(Exception):
func.BOP(a1, a2, a1, a1)
with assert_raises(Exception):
func.BOP(a1, a1, a2, a1)
with assert_raises(Exception):
func.BOP(a1, a1, a1, a2)
def test_input_nans():
a1 = np.arange(10, dtype=float)
a2 = np.arange(10, dtype=float)
a2[0] = np.nan
a2[1] = np.nan
r1, r2 = func.AROON(a1, a2, 2)
assert_np_arrays_equal(r1, [np.nan, np.nan, np.nan, np.nan, 0, 0, 0, 0, 0, 0])
assert_np_arrays_equal(r2, [np.nan, np.nan, np.nan, np.nan, 100, 100, 100, 100, 100, 100])
r1, r2 = func.AROON(a2, a1, 2)
assert_np_arrays_equal(r1, [np.nan, np.nan, np.nan, np.nan, 0, 0, 0, 0, 0, 0])
assert_np_arrays_equal(r2, [np.nan, np.nan, np.nan, np.nan, 100, 100, 100, 100, 100, 100])
def test_unstable_period():
a = np.arange(10, dtype=float)
r = func.EMA(a, 3)
assert_np_arrays_equal(r, [np.nan, np.nan, 1, 2, 3, 4, 5, 6, 7, 8])
talib.set_unstable_period('EMA', 5)
r = func.EMA(a, 3)
assert_np_arrays_equal(r, [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 6, 7, 8])
talib.set_unstable_period('EMA', 0)
def test_MIN():
result = func.MIN(series, timeperiod=4)
i = np.where(~np.isnan(result))[0][0]
assert_equals(len(series), len(result))
assert_equals(result[i + 1], 93.780)
assert_equals(result[i + 2], 93.780)
assert_equals(result[i + 3], 92.530)
assert_equals(result[i + 4], 92.530)
values = np.array([np.nan, 5., 4., 3., 5., 7.])
result = func.MIN(values, timeperiod=2)
assert_np_arrays_equal(result, [np.nan, np.nan, 4, 3, 3, 5])
def test_MAX():
result = func.MAX(series, timeperiod=4)
i = np.where(~np.isnan(result))[0][0]
assert_equals(len(series), len(result))
assert_equals(result[i + 2], 95.090)
assert_equals(result[i + 3], 95.090)
assert_equals(result[i + 4], 94.620)
assert_equals(result[i + 5], 94.620)
def test_MOM():
values = np.array([90.0,88.0,89.0])
result = func.MOM(values, timeperiod=1)
assert_np_arrays_equal(result, [np.nan, -2, 1])
result = func.MOM(values, timeperiod=2)
assert_np_arrays_equal(result, [np.nan, np.nan, -1])
result = func.MOM(values, timeperiod=3)
assert_np_arrays_equal(result, [np.nan, np.nan, np.nan])
result = func.MOM(values, timeperiod=4)
assert_np_arrays_equal(result, [np.nan, np.nan, np.nan])
def test_BBANDS():
upper, middle, lower = func.BBANDS(series, timeperiod=20,
nbdevup=2.0, nbdevdn=2.0,
matype=talib.MA_Type.EMA)
i = np.where(~np.isnan(upper))[0][0]
assert_true(len(upper) == len(middle) == len(lower) == len(series))
#assert_true(abs(upper[i + 0] - 98.0734) < 1e-3)
assert_true(abs(middle[i + 0] - 92.8910) < 1e-3)
assert_true(abs(lower[i + 0] - 87.7086) < 1e-3)
#assert_true(abs(upper[i + 13] - 93.674) < 1e-3)
assert_true(abs(middle[i + 13] - 87.679) < 1e-3)
assert_true(abs(lower[i + 13] - 81.685) < 1e-3)
def test_DEMA():
result = func.DEMA(series)
i = np.where(~np.isnan(result))[0][0]
assert_true(len(series) == len(result))
assert_true(abs(result[i + 1] - 86.765) < 1e-3)
assert_true(abs(result[i + 2] - 86.942) < 1e-3)
assert_true(abs(result[i + 3] - 87.089) < 1e-3)
assert_true(abs(result[i + 4] - 87.656) < 1e-3)
def test_EMAEMA():
result = func.EMA(series, timeperiod=2)
result = func.EMA(result, timeperiod=2)
i = np.where(~np.isnan(result))[0][0]
assert_true(len(series) == len(result))
assert_equals(i, 2)
def test_CDL3BLACKCROWS():
o = np.array([39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 40.32, 40.51, 38.09, 35.00, 27.66, 30.80])
h = np.array([40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 41.69, 40.84, 38.12, 35.50, 31.74, 32.51])
l = np.array([35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 39.26, 36.73, 33.37, 30.03, 27.03, 28.31])
c = np.array([40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.46, 37.08, 33.37, 30.03, 31.46, 28.31])
result = func.CDL3BLACKCROWS(o, h, l, c)
assert_np_arrays_equal(result, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -100, 0, 0])
def test_RSI():
a = np.array([0.00000024, 0.00000024, 0.00000024,
0.00000024, 0.00000024, 0.00000023,
0.00000024, 0.00000024, 0.00000024,
0.00000024, 0.00000023, 0.00000024,
0.00000023, 0.00000024, 0.00000023,
0.00000024, 0.00000024, 0.00000023,
0.00000023, 0.00000023], dtype='float64')
result = func.RSI(a, 10)
assert_np_arrays_equal(result, [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,0,0,0,0,0,0,0,0,0,0])
result = func.RSI(a * 100000, 10)
assert_np_arrays_equal(result, [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,33.333333333333329,51.351351351351347,39.491916859122398,51.84807024709005,42.25953803191981,52.101824405061215,52.101824405061215,43.043664867691085,43.043664867691085,43.043664867691085])
def test_MAVP():
a = np.array([1,5,3,4,7,3,8,1,4,6], dtype=float)
b = np.array([2,4,2,4,2,4,2,4,2,4], dtype=float)
result = func.MAVP(a, b, minperiod=2, maxperiod=4)
assert_np_arrays_equal(result, [np.nan,np.nan,np.nan,3.25,5.5,4.25,5.5,4.75,2.5,4.75])
sma2 = func.SMA(a, 2)
assert_np_arrays_equal(result[4::2], sma2[4::2])
sma4 = func.SMA(a, 4)
assert_np_arrays_equal(result[3::2], sma4[3::2])
result = func.MAVP(a, b, minperiod=2, maxperiod=3)
assert_np_arrays_equal(result, [np.nan,np.nan,4,4,5.5,4.666666666666667,5.5,4,2.5,3.6666666666666665])
sma3 = func.SMA(a, 3)
assert_np_arrays_equal(result[2::2], sma2[2::2])
assert_np_arrays_equal(result[3::2], sma3[3::2])

View File

@ -1,50 +0,0 @@
import numpy as np
import pandas as pd
from nose.tools import assert_equals, assert_is_instance, assert_true
import talib
from talib.test_data import series, assert_np_arrays_equal
def test_MOM():
values = pd.Series([90.0,88.0,89.0], index=[10, 20, 30])
result = talib.MOM(values, timeperiod=1)
assert_is_instance(result, pd.Series)
assert_np_arrays_equal(result.values, [np.nan, -2, 1])
assert_np_arrays_equal(result.index, [10, 20, 30])
result = talib.MOM(values, timeperiod=2)
assert_is_instance(result, pd.Series)
assert_np_arrays_equal(result.values, [np.nan, np.nan, -1])
assert_np_arrays_equal(result.index, [10, 20, 30])
result = talib.MOM(values, timeperiod=3)
assert_is_instance(result, pd.Series)
assert_np_arrays_equal(result.values, [np.nan, np.nan, np.nan])
assert_np_arrays_equal(result.index, [10, 20, 30])
result = talib.MOM(values, timeperiod=4)
assert_is_instance(result, pd.Series)
assert_np_arrays_equal(result.values, [np.nan, np.nan, np.nan])
assert_np_arrays_equal(result.index, [10, 20, 30])
def test_MAVP():
a = pd.Series([1,5,3,4,7,3,8,1,4,6], index=range(10, 20), dtype=float)
b = pd.Series([2,4,2,4,2,4,2,4,2,4], index=range(20, 30), dtype=float)
result = talib.MAVP(a, b, minperiod=2, maxperiod=4)
assert_is_instance(result, pd.Series)
assert_np_arrays_equal(result.values, [np.nan,np.nan,np.nan,3.25,5.5,4.25,5.5,4.75,2.5,4.75])
assert_np_arrays_equal(result.index, range(10, 20))
sma2 = talib.SMA(a, 2)
assert_is_instance(sma2, pd.Series)
assert_np_arrays_equal(sma2.index, range(10, 20))
assert_np_arrays_equal(result.values[4::2], sma2.values[4::2])
sma4 = talib.SMA(a, 4)
assert_is_instance(sma4, pd.Series)
assert_np_arrays_equal(sma4.index, range(10, 20))
assert_np_arrays_equal(result.values[3::2], sma4.values[3::2])
result = talib.MAVP(a, b, minperiod=2, maxperiod=3)
assert_is_instance(result, pd.Series)
assert_np_arrays_equal(result.values, [np.nan,np.nan,4,4,5.5,4.666666666666667,5.5,4,2.5,3.6666666666666665])
assert_np_arrays_equal(result.index, range(10, 20))
sma3 = talib.SMA(a, 3)
assert_is_instance(sma3, pd.Series)
assert_np_arrays_equal(sma3.index, range(10, 20))
assert_np_arrays_equal(result.values[2::2], sma2.values[2::2])
assert_np_arrays_equal(result.values[3::2], sma3.values[3::2])

View File

@ -1,31 +0,0 @@
import numpy as np
from nose.tools import assert_equals, assert_true, assert_raises
import talib
from talib import stream
def test_streaming():
a = np.array([1,1,2,3,5,8,13], dtype=float)
r = stream.MOM(a, timeperiod=1)
assert_equals(r, 5)
r = stream.MOM(a, timeperiod=2)
assert_equals(r, 8)
r = stream.MOM(a, timeperiod=3)
assert_equals(r, 10)
r = stream.MOM(a, timeperiod=4)
assert_equals(r, 11)
r = stream.MOM(a, timeperiod=5)
assert_equals(r, 12)
r = stream.MOM(a, timeperiod=6)
assert_equals(r, 12)
r = stream.MOM(a, timeperiod=7)
assert_true(np.isnan(r))
def test_CDL3BLACKCROWS():
o = np.array([39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 40.32, 40.51, 38.09, 35.00])
h = np.array([40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 41.69, 40.84, 38.12, 35.50])
l = np.array([35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 39.26, 36.73, 33.37, 30.03])
c = np.array([40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.46, 37.08, 33.37, 30.03])
r = stream.CDL3BLACKCROWS(o, h, l, c)
assert_equals(r, -100)

View File

@ -7,11 +7,7 @@ from pathlib import Path
from typing import Callable
import numpy as np
try:
from vnpy import talib # For windows
except ModuleNotFoundError:
import talib # For linux (needs extra install)
import talib
from .object import BarData, TickData