diff --git a/vnpy/talib/stream.py b/vnpy/talib/stream.py new file mode 100644 index 00000000..ee2cc85e --- /dev/null +++ b/vnpy/talib/stream.py @@ -0,0 +1,6 @@ +import talib._ta_lib as _ta_lib +from ._ta_lib import __TA_FUNCTION_NAMES__ + + +for func_name in __TA_FUNCTION_NAMES__: + globals()[func_name] = getattr(_ta_lib, "stream_%s" % func_name) diff --git a/vnpy/talib/test_abstract.py b/vnpy/talib/test_abstract.py new file mode 100644 index 00000000..8b7e3e6a --- /dev/null +++ b/vnpy/talib/test_abstract.py @@ -0,0 +1,257 @@ +import numpy as np +from nose.tools import ( + assert_equals, + assert_true, + assert_false, + assert_raises, + ) + +try: + from collections import OrderedDict +except ImportError: # handle python 2.6 and earlier + from ordereddict import OrderedDict + +import talib +from talib import func +from talib import abstract +from talib.test_data import ford_2012, assert_np_arrays_equal, assert_np_arrays_not_equal + + +def test_pandas(): + import pandas + input_df = pandas.DataFrame(ford_2012) + input_dict = dict((k, pandas.Series(v)) for k, v in ford_2012.items()) + + expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close']) # 5, 3, 0, 3, 0 + output = abstract.Function('stoch', input_df).outputs + assert_true(isinstance(output, pandas.DataFrame)) + assert_np_arrays_equal(expected_k, output['slowk']) + assert_np_arrays_equal(expected_d, output['slowd']) + output = abstract.Function('stoch', input_dict).outputs + assert_true(isinstance(output, list)) + assert_np_arrays_equal(expected_k, output[0]) + assert_np_arrays_equal(expected_d, output[1]) + + expected = func.SMA(ford_2012['close'], 10) + output = abstract.Function('sma', input_df, 10).outputs + assert_true(isinstance(output, pandas.Series)) + assert_np_arrays_equal(expected, output) + output = abstract.Function('sma', input_dict, 10).outputs + assert_true(isinstance(output, np.ndarray)) + assert_np_arrays_equal(expected, output) + + +def test_pandas_series(): + import pandas + input_df = pandas.DataFrame(ford_2012) + output = talib.SMA(input_df['close'], 10) + expected = pandas.Series(func.SMA(ford_2012['close'], 10), + index=input_df.index) + pandas.util.testing.assert_series_equal(output, expected) + + # Test kwargs + output = talib.SMA(real=input_df['close'], timeperiod=10) + pandas.util.testing.assert_series_equal(output, expected) + + # Test talib.func API + output = func.SMA(input_df['close'], timeperiod=10) + pandas.util.testing.assert_series_equal(output, expected) + + # Test multiple outputs such as from BBANDS + _, output, _ = talib.BBANDS(input_df['close'], 10) + expected = pandas.Series(func.BBANDS(ford_2012['close'], 10)[1], + index=input_df.index) + pandas.util.testing.assert_series_equal(output, expected) + + +def test_SMA(): + expected = func.SMA(ford_2012['close'], 10) + assert_np_arrays_equal(expected, abstract.Function('sma', ford_2012, 10).outputs) + assert_np_arrays_equal(expected, abstract.Function('sma')(ford_2012, 10, price='close')) + assert_np_arrays_equal(expected, abstract.Function('sma')(ford_2012, timeperiod=10)) + expected = func.SMA(ford_2012['open'], 10) + assert_np_arrays_equal(expected, abstract.Function('sma', ford_2012, 10, price='open').outputs) + assert_np_arrays_equal(expected, abstract.Function('sma', price='low')(ford_2012, 10, price='open')) + assert_np_arrays_not_equal(expected, abstract.Function('sma', ford_2012, 10, price='open')(timeperiod=20)) + assert_np_arrays_not_equal(expected, abstract.Function('sma', ford_2012)(10, price='close')) + assert_np_arrays_not_equal(expected, abstract.Function('sma', 10)(ford_2012, price='high')) + assert_np_arrays_not_equal(expected, abstract.Function('sma', price='low')(ford_2012, 10)) + input_arrays = {'foobarbaz': ford_2012['open']} + assert_np_arrays_equal(expected, abstract.SMA(input_arrays, 10, price='foobarbaz')) + + +def test_STOCH(): + # check defaults match + expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close']) # 5, 3, 0, 3, 0 + got_k, got_d = abstract.Function('stoch', ford_2012).outputs + assert_np_arrays_equal(expected_k, got_k) + assert_np_arrays_equal(expected_d, got_d) + + expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close']) + got_k, got_d = abstract.Function('stoch', ford_2012)(5, 3, 0, 3, 0) + assert_np_arrays_equal(expected_k, got_k) + assert_np_arrays_equal(expected_d, got_d) + + expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close'], 15) + got_k, got_d = abstract.Function('stoch', ford_2012)(15, 5, 0, 5, 0) + assert_np_arrays_not_equal(expected_k, got_k) + assert_np_arrays_not_equal(expected_d, got_d) + + expected_k, expected_d = func.STOCH(ford_2012['high'], ford_2012['low'], ford_2012['close'], 15, 5, 1, 5, 1) + got_k, got_d = abstract.Function('stoch', ford_2012)(15, 5, 1, 5, 1) + assert_np_arrays_equal(expected_k, got_k) + assert_np_arrays_equal(expected_d, got_d) + +def test_doji_candle(): + expected = func.CDLDOJI(ford_2012['open'], ford_2012['high'], ford_2012['low'], ford_2012['close']) + got = abstract.Function('CDLDOJI').run(ford_2012) + assert_np_arrays_equal(got, expected) + +def test_MAVP(): + mavp = abstract.MAVP + assert_raises(Exception, mavp.set_input_arrays, ford_2012) + input_d = {} + input_d['close'] = ford_2012['close'] + input_d['periods'] = np.arange(30) + assert_true(mavp.set_input_arrays(input_d)) + assert_equals(mavp.input_arrays, input_d) + +def test_info(): + stochrsi = abstract.Function('STOCHRSI') + stochrsi.input_names = {'price': 'open'} + stochrsi.parameters = {'fastd_matype': talib.MA_Type.EMA} + expected = { + 'display_name': 'Stochastic Relative Strength Index', + 'function_flags': ['Function has an unstable period'], + 'group': 'Momentum Indicators', + 'input_names': OrderedDict([('price', 'open')]), + 'name': 'STOCHRSI', + 'output_flags': OrderedDict([ + ('fastk', ['Line']), + ('fastd', ['Line']), + ]), + 'output_names': ['fastk', 'fastd'], + 'parameters': OrderedDict([ + ('timeperiod', 14), + ('fastk_period', 5), + ('fastd_period', 3), + ('fastd_matype', 1), + ]), + } + assert_equals(expected, stochrsi.info) + + expected = { + 'display_name': 'Bollinger Bands', + 'function_flags': ['Output scale same as input'], + 'group': 'Overlap Studies', + 'input_names': OrderedDict([('price', 'close')]), + 'name': 'BBANDS', + 'output_flags': OrderedDict([ + ('upperband', ['Values represent an upper limit']), + ('middleband', ['Line']), + ('lowerband', ['Values represent a lower limit']), + ]), + 'output_names': ['upperband', 'middleband', 'lowerband'], + 'parameters': OrderedDict([ + ('timeperiod', 5), + ('nbdevup', 2), + ('nbdevdn', 2), + ('matype', 0), + ]), + } + assert_equals(expected, abstract.Function('BBANDS').info) + +def test_input_names(): + expected = OrderedDict([('price', 'close')]) + assert_equals(expected, abstract.Function('MAMA').input_names) + + # test setting input_names + obv = abstract.Function('OBV') + expected = OrderedDict([ + ('price', 'open'), + ('prices', ['volume']), + ]) + obv.input_names = expected + assert_equals(obv.input_names, expected) + + obv.input_names = { + 'price': 'open', + 'prices': ['volume'], + } + assert_equals(obv.input_names, expected) + +def test_input_arrays(): + mama = abstract.Function('MAMA') + # test default setting + expected = { + 'open': None, + 'high': None, + 'low': None, + 'close': None, + 'volume': None, + } + assert_equals(expected, mama.get_input_arrays()) + # test setting/getting input_arrays + assert_true(mama.set_input_arrays(ford_2012)) + assert_equals(mama.get_input_arrays(), ford_2012) + assert_raises(Exception, + mama.set_input_arrays, {'hello': 'fail', 'world': 'bye'}) + + # test only required keys are needed + willr = abstract.Function('WILLR') + reqd = willr.input_names['prices'] + input_d = dict([(key, ford_2012[key]) for key in reqd]) + assert_true(willr.set_input_arrays(input_d)) + assert_equals(willr.input_arrays, input_d) + + # test extraneous keys are ignored + input_d['extra_stuffs'] = 'you should never see me' + input_d['date'] = np.random.rand(100) + assert_true(willr.set_input_arrays(input_d)) + + # test missing keys get detected + input_d['open'] = ford_2012['open'] + input_d.pop('close') + assert_raises(Exception, willr.set_input_arrays, input_d) + + # test changing input_names on the Function + willr.input_names = {'prices': ['high', 'low', 'open']} + assert_true(willr.set_input_arrays(input_d)) + +def test_parameters(): + stoch = abstract.Function('STOCH') + expected = OrderedDict([ + ('fastk_period', 5), + ('slowk_period', 3), + ('slowk_matype', 0), + ('slowd_period', 3), + ('slowd_matype', 0), + ]) + assert_equals(expected, stoch.parameters) + + stoch.parameters = {'fastk_period': 10} + expected['fastk_period'] = 10 + assert_equals(expected, stoch.parameters) + + stoch.parameters = {'slowk_period': 8, 'slowd_period': 5} + expected['slowk_period'] = 8 + expected['slowd_period'] = 5 + assert_equals(expected, stoch.parameters) + + stoch.parameters = {'slowd_matype': talib.MA_Type.T3} + expected['slowd_matype'] = 8 + assert_equals(expected, stoch.parameters) + + stoch.parameters = { + 'slowk_matype': talib.MA_Type.WMA, + 'slowd_matype': talib.MA_Type.EMA, + } + expected['slowk_matype'] = 2 + expected['slowd_matype'] = 1 + assert_equals(expected, stoch.parameters) + +def test_lookback(): + assert_equals(abstract.Function('SMA', 10).lookback, 9) + + stochrsi = abstract.Function('stochrsi', 20, 5, 3) + assert_equals(stochrsi.lookback, 26) diff --git a/vnpy/talib/test_data.py b/vnpy/talib/test_data.py new file mode 100644 index 00000000..3fbaf37f --- /dev/null +++ b/vnpy/talib/test_data.py @@ -0,0 +1,242 @@ + +from __future__ import print_function + +import numpy as np + +from nose.tools import assert_equal, assert_not_equal, assert_true + +ford_2012_dates = np.asarray([ 20120103, 20120104, 20120105, 20120106, 20120109, + 20120110, 20120111, 20120112, 20120113, 20120117, 20120118, 20120119, + 20120120, 20120123, 20120124, 20120125, 20120126, 20120127, 20120130, + 20120131, 20120201, 20120202, 20120203, 20120206, 20120207, 20120208, + 20120209, 20120210, 20120213, 20120214, 20120215, 20120216, 20120217, + 20120221, 20120222, 20120223, 20120224, 20120227, 20120228, 20120229, + 20120301, 20120302, 20120305, 20120306, 20120307, 20120308, 20120309, + 20120312, 20120313, 20120314, 20120315, 20120316, 20120319, 20120320, + 20120321, 20120322, 20120323, 20120326, 20120327, 20120328, 20120329, + 20120330, 20120402, 20120403, 20120404, 20120405, 20120409, 20120410, + 20120411, 20120412, 20120413, 20120416, 20120417, 20120418, 20120419, + 20120420, 20120423, 20120424, 20120425, 20120426, 20120427, 20120430, + 20120501, 20120502, 20120503, 20120504, 20120507, 20120508, 20120509, + 20120510, 20120511, 20120514, 20120515, 20120516, 20120517, 20120518, + 20120521, 20120522, 20120523, 20120524, 20120525, 20120529, 20120530, + 20120531, 20120601, 20120604, 20120605, 20120606, 20120607, 20120608, + 20120611, 20120612, 20120613, 20120614, 20120615, 20120618, 20120619, + 20120620, 20120621, 20120622, 20120625, 20120626, 20120627, 20120628, + 20120629, 20120702, 20120703, 20120705, 20120706, 20120709, 20120710, + 20120711, 20120712, 20120713, 20120716, 20120717, 20120718, 20120719, + 20120720, 20120723, 20120724, 20120725, 20120726, 20120727, 20120730, + 20120731, 20120801, 20120802, 20120803, 20120806, 20120807, 20120808, + 20120809, 20120810, 20120813, 20120814, 20120815, 20120816, 20120817, + 20120820, 20120821, 20120822, 20120823, 20120824, 20120827, 20120828, + 20120829, 20120830, 20120831, 20120904, 20120905, 20120906, 20120907, + 20120910, 20120911, 20120912, 20120913, 20120914, 20120917, 20120918, + 20120919, 20120920, 20120921, 20120924, 20120925, 20120926, 20120927, + 20120928, 20121001, 20121002, 20121003, 20121004, 20121005, 20121008, + 20121009, 20121010, 20121011, 20121012, 20121015, 20121016, 20121017, + 20121018, 20121019, 20121022, 20121023, 20121024, 20121025, 20121026, + 20121031, 20121101, 20121102, 20121105, 20121106, 20121107, 20121108, + 20121109, 20121112, 20121113, 20121114, 20121115, 20121116, 20121119, + 20121120, 20121121, 20121123, 20121126, 20121127, 20121128, 20121129, + 20121130, 20121203, 20121204, 20121205, 20121206, 20121207, 20121210, + 20121211, 20121212, 20121213, 20121214, 20121217, 20121218, 20121219, + 20121220, 20121221, 20121224, 20121226, 20121227, 20121228, 20121231 ]) + +ford_2012 = { + 'open': np.asarray([ 11.00, 11.15, 11.33, 11.74, 11.83, 12.00, 11.74, 12.16, + 12.01, 12.20, 12.03, 12.48, 12.55, 12.69, 12.56, 12.80, 13.03, 11.96, + 12.06, 12.47, 12.73, 12.40, 12.47, 12.85, 12.93, 12.91, 12.89, 12.52, + 12.74, 12.46, 12.47, 12.38, 12.84, 12.74, 12.49, 12.27, 12.43, 12.11, + 12.34, 12.28, 12.48, 12.74, 12.67, 12.23, 12.21, 12.41, 12.53, 12.57, + 12.48, 12.64, 12.90, 12.86, 12.52, 12.48, 12.59, 12.48, 12.31, 12.45, + 12.51, 12.35, 12.33, 12.55, 12.50, 12.71, 12.46, 12.38, 12.26, 12.19, + 11.99, 11.94, 11.98, 12.01, 11.98, 11.81, 11.81, 11.71, 11.15, 11.61, + 11.51, 11.71, 12.03, 11.42, 11.25, 11.16, 11.13, 10.84, 10.53, 10.60, + 10.48, 10.83, 10.61, 10.41, 10.34, 10.23, 10.16, 10.08, 10.02, 10.25, + 10.32, 10.50, 10.61, 10.69, 10.73, 10.62, 10.33, 10.15, 10.01, 10.29, + 10.73, 10.48, 10.77, 10.47, 10.39, 10.27, 10.40, 10.35, 10.37, 10.58, + 10.65, 10.35, 10.13, 10.06, 10.05, 9.93, 9.95, 9.50, 9.53, 9.67, 9.47, + 9.46, 9.50, 9.33, 9.26, 9.16, 9.22, 9.28, 9.38, 9.45, 9.28, 9.08, 9.17, + 9.17, 9.05, 8.99, 9.04, 9.13, 9.29, 8.99, 9.02, 9.13, 9.18, 9.25, 9.31, + 9.30, 9.35, 9.45, 9.44, 9.50, 9.65, 9.58, 9.65, 9.50, 9.45, 9.42, 9.51, + 9.37, 9.33, 9.30, 9.39, 9.37, 9.45, 9.66, 9.95, 10.08, 10.18, 10.25, + 10.20, 10.41, 10.27, 10.30, 10.49, 10.48, 10.53, 10.30, 10.35, 9.98, + 10.13, 9.99, 9.89, 10.01, 9.82, 10.06, 10.17, 10.06, 10.21, 10.12, + 10.06, 10.14, 10.11, 10.26, 10.31, 10.36, 10.42, 10.14, 10.02, 10.08, + 10.42, 10.35, 10.70, 11.19, 11.31, 11.15, 11.33, 11.25, 11.07, 10.76, + 11.03, 10.89, 11.02, 10.57, 10.58, 10.65, 10.85, 10.84, 10.98, 11.05, + 11.10, 11.05, 11.32, 11.52, 11.56, 11.40, 11.32, 11.26, 11.27, 11.41, + 11.51, 11.52, 11.46, 11.27, 11.16, 11.48, 11.79, 11.74, 11.55, 11.67, + 12.31, 12.79, 12.55, 12.88, ]), + + 'high': np.asarray([ 11.25, 11.53, 11.63, 11.80, 11.95, 12.05, 12.18, 12.18, + 12.08, 12.26, 12.37, 12.72, 12.64, 12.84, 12.86, 12.98, 13.05, 12.53, + 12.44, 12.51, 12.75, 12.43, 12.84, 13.00, 12.97, 12.96, 12.90, 12.66, + 12.74, 12.58, 12.57, 12.77, 12.88, 12.76, 12.51, 12.44, 12.46, 12.36, + 12.35, 12.55, 12.77, 12.94, 12.68, 12.25, 12.30, 12.55, 12.73, 12.59, + 12.72, 12.90, 13.04, 12.90, 12.68, 12.61, 12.67, 12.54, 12.37, 12.50, + 12.61, 12.36, 12.52, 12.58, 12.65, 12.95, 12.52, 12.58, 12.29, 12.28, + 12.02, 12.13, 12.03, 12.05, 12.00, 11.85, 11.88, 11.72, 11.40, 11.61, + 11.75, 11.93, 12.04, 11.47, 11.34, 11.17, 11.15, 10.87, 10.79, 10.64, + 10.81, 10.86, 10.83, 10.53, 10.34, 10.43, 10.25, 10.18, 10.23, 10.40, + 10.45, 10.62, 10.68, 10.88, 10.75, 10.68, 10.37, 10.18, 10.24, 10.58, + 10.78, 10.68, 10.80, 10.55, 10.49, 10.45, 10.42, 10.40, 10.64, 10.74, + 10.68, 10.40, 10.18, 10.08, 10.10, 10.09, 9.98, 9.60, 9.79, 9.74, 9.52, + 9.47, 9.55, 9.38, 9.28, 9.32, 9.32, 9.35, 9.52, 9.50, 9.35, 9.21, 9.24, + 9.20, 9.11, 9.10, 9.18, 9.28, 9.42, 9.03, 9.15, 9.21, 9.39, 9.38, 9.46, + 9.36, 9.42, 9.66, 9.54, 9.67, 9.66, 9.64, 9.70, 9.56, 9.54, 9.52, 9.52, + 9.44, 9.40, 9.34, 9.43, 9.47, 9.62, 9.96, 10.23, 10.28, 10.25, 10.30, + 10.38, 10.57, 10.42, 10.45, 10.66, 10.52, 10.54, 10.40, 10.37, 10.12, + 10.18, 10.00, 10.08, 10.05, 10.02, 10.15, 10.28, 10.12, 10.25, 10.12, + 10.26, 10.25, 10.25, 10.32, 10.41, 10.57, 10.43, 10.24, 10.11, 10.29, + 10.49, 10.42, 11.17, 11.30, 11.38, 11.35, 11.59, 11.34, 11.23, 11.10, + 11.16, 11.10, 11.05, 10.80, 10.64, 10.90, 11.02, 11.00, 11.10, 11.14, + 11.27, 11.26, 11.53, 11.60, 11.70, 11.44, 11.40, 11.31, 11.50, 11.53, + 11.58, 11.56, 11.50, 11.27, 11.41, 11.68, 11.85, 11.80, 11.86, 12.40, + 12.79, 12.81, 12.88, 13.08, ]), + + 'low': np.asarray([ 10.99, 11.07, 11.24, 11.52, 11.70, 11.63, 11.65, 11.89, + 11.84, 11.96, 12.00, 12.43, 12.45, 12.55, 12.46, 12.70, 12.66, 11.79, + 12.00, 12.20, 12.29, 12.20, 12.39, 12.71, 12.83, 12.80, 12.67, 12.37, + 12.51, 12.34, 12.33, 12.38, 12.71, 12.46, 12.22, 12.16, 12.19, 11.99, + 12.20, 12.25, 12.45, 12.68, 12.41, 12.00, 12.15, 12.32, 12.48, 12.37, + 12.40, 12.63, 12.83, 12.51, 12.48, 12.39, 12.55, 12.24, 12.18, 12.39, + 12.30, 12.18, 12.24, 12.40, 12.44, 12.46, 12.32, 12.38, 12.11, 11.65, + 11.88, 11.86, 11.84, 11.83, 11.88, 11.72, 11.58, 11.39, 11.15, 11.36, + 11.43, 11.67, 11.52, 11.15, 11.11, 11.00, 10.85, 10.63, 10.52, 10.40, + 10.41, 10.66, 10.56, 10.30, 10.10, 10.15, 10.01, 9.96, 10.00, 10.15, + 10.22, 10.38, 10.51, 10.68, 10.52, 10.40, 10.06, 9.91, 9.97, 10.27, + 10.52, 10.38, 10.45, 10.31, 10.22, 10.21, 10.26, 10.26, 10.35, 10.52, + 10.25, 10.18, 9.95, 9.96, 9.97, 9.93, 9.46, 9.30, 9.49, 9.53, 9.40, + 9.31, 9.28, 9.26, 9.12, 9.14, 9.15, 9.12, 9.34, 9.33, 9.18, 9.05, 8.95, + 8.91, 8.83, 8.88, 9.01, 9.12, 8.99, 8.82, 8.96, 9.09, 9.18, 9.24, 9.30, + 9.23, 9.25, 9.42, 9.41, 9.49, 9.60, 9.51, 9.52, 9.40, 9.42, 9.41, 9.38, + 9.31, 9.29, 9.25, 9.31, 9.35, 9.39, 9.66, 9.93, 10.06, 10.13, 10.17, + 10.12, 10.39, 10.26, 10.28, 10.45, 10.35, 10.36, 10.26, 10.06, 9.86, + 10.02, 9.81, 9.88, 9.71, 9.76, 9.96, 10.13, 9.99, 10.02, 9.95, 10.05, + 10.09, 10.09, 10.22, 10.26, 10.33, 10.13, 10.03, 9.97, 10.01, 10.28, + 10.22, 10.60, 10.88, 11.15, 11.13, 11.26, 11.04, 10.89, 10.71, 10.96, + 10.86, 10.62, 10.46, 10.38, 10.65, 10.76, 10.80, 10.96, 10.97, 11.10, + 10.98, 11.32, 11.33, 11.40, 11.23, 11.18, 11.19, 11.26, 11.41, 11.40, + 11.43, 11.21, 11.03, 11.14, 11.40, 11.62, 11.58, 11.47, 11.67, 12.31, + 12.36, 12.52, 12.76, ]), + + 'close': np.asarray([ 11.13, 11.30, 11.59, 11.71, 11.80, 11.80, 12.07, 12.14, + 12.04, 12.02, 12.34, 12.61, 12.59, 12.66, 12.82, 12.93, 12.79, 12.21, + 12.29, 12.42, 12.33, 12.26, 12.79, 12.96, 12.88, 12.84, 12.69, 12.44, + 12.54, 12.48, 12.38, 12.74, 12.75, 12.53, 12.28, 12.40, 12.23, 12.30, + 12.25, 12.38, 12.66, 12.72, 12.46, 12.09, 12.24, 12.46, 12.58, 12.43, + 12.70, 12.88, 12.90, 12.51, 12.63, 12.54, 12.57, 12.32, 12.32, 12.48, + 12.32, 12.32, 12.50, 12.48, 12.62, 12.64, 12.51, 12.47, 12.22, 11.79, + 11.91, 12.07, 11.92, 11.88, 11.91, 11.79, 11.66, 11.41, 11.35, 11.39, + 11.73, 11.87, 11.60, 11.28, 11.23, 11.10, 10.92, 10.67, 10.66, 10.61, + 10.69, 10.71, 10.58, 10.32, 10.15, 10.16, 10.01, 10.01, 10.20, 10.19, + 10.41, 10.59, 10.60, 10.84, 10.66, 10.56, 10.12, 10.04, 10.19, 10.57, + 10.55, 10.66, 10.45, 10.50, 10.30, 10.41, 10.35, 10.34, 10.56, 10.65, + 10.27, 10.19, 10.01, 10.01, 10.02, 10.09, 9.59, 9.39, 9.60, 9.57, 9.50, + 9.45, 9.35, 9.33, 9.13, 9.27, 9.26, 9.34, 9.38, 9.35, 9.21, 9.17, 9.06, + 8.97, 8.96, 9.00, 9.10, 9.24, 9.04, 8.92, 9.09, 9.15, 9.31, 9.35, 9.34, + 9.35, 9.40, 9.44, 9.49, 9.59, 9.63, 9.63, 9.53, 9.49, 9.45, 9.49, 9.39, + 9.34, 9.32, 9.31, 9.34, 9.41, 9.57, 9.92, 10.14, 10.11, 10.15, 10.21, + 10.34, 10.53, 10.39, 10.42, 10.59, 10.44, 10.40, 10.32, 10.09, 10.01, + 10.02, 9.86, 9.93, 9.79, 9.94, 10.11, 10.16, 10.05, 10.10, 9.98, 10.14, + 10.12, 10.22, 10.30, 10.41, 10.43, 10.18, 10.17, 10.00, 10.17, 10.39, + 10.36, 11.16, 11.25, 11.17, 11.25, 11.42, 11.06, 10.90, 10.93, 10.97, + 11.00, 10.67, 10.57, 10.50, 10.83, 10.85, 10.92, 11.10, 11.11, 11.10, + 11.25, 11.53, 11.45, 11.41, 11.31, 11.31, 11.24, 11.48, 11.47, 11.49, + 11.47, 11.27, 11.10, 11.39, 11.67, 11.73, 11.77, 11.86, 12.40, 12.79, + 12.76, 12.87, 12.95, ]), + + 'volume': np.asarray([ 45709900, 79725200, 67877500, 59840700, 53981500, + 121750600, 63806000, 48687700, 46366700, 44398400, 47102700, 70894200, + 43705700, 49379700, 45768400, 54021600, 75470700, 142155300, 57752600, + 46412100, 71669000, 48347600, 78851200, 46363300, 39413500, 35352500, + 52290500, 52505500, 34474400, 39627900, 38174800, 49164400, 30778000, + 38409800, 43326000, 36747600, 31399300, 38703400, 30789000, 62093700, + 68262000, 49063500, 28433700, 57374500, 28440900, 37099100, 36159300, + 30275700, 42783600, 47578500, 55286600, 77119600, 52445700, 40214400, + 27521400, 50117100, 44755000, 26692200, 35070700, 41051700, 51039700, + 36381000, 43966900, 97034200, 51505000, 37939500, 42515300, 77370300, + 34724400, 26988800, 39675000, 31903500, 35981200, 32314000, 48169200, + 52631000, 31269200, 38615200, 45185400, 40889300, 83070300, 46156300, + 43959200, 48572900, 40238400, 53268400, 33235200, 46174500, 54501200, + 42526100, 36561300, 50225200, 41886500, 44321300, 49648900, 50572000, + 38134900, 44295700, 75647800, 45334100, 30430800, 43760600, 44592100, + 54297000, 68237000, 57305600, 38326200, 50458000, 33846100, 30811600, + 35811400, 35130800, 53471900, 37531800, 39442000, 27361000, 37155900, + 40810100, 40062800, 56427300, 44297600, 31871900, 33278900, 38648400, + 138138600, 63388600, 49629300, 31783900, 30355400, 37441600, 33516600, + 32028700, 55111000, 30248300, 28838200, 29510000, 31010000, 33615000, + 27968300, 33773800, 53519200, 44338200, 51798900, 67986800, 40958300, + 41360900, 65973000, 45326500, 38631400, 23819100, 43574500, 22630300, + 30909800, 19618800, 21122000, 21129500, 21308300, 34323700, 34533900, + 38923800, 26281100, 26965500, 23537700, 19574600, 22754200, 23084400, + 26115700, 16459400, 28029200, 37965000, 40608800, 67996400, 60617000, + 43381300, 28165300, 28046500, 50920200, 55934300, 31922200, 34937000, + 42403000, 28755100, 35459800, 28557900, 36866300, 44362600, 25740900, + 44586300, 33445600, 63630000, 51023800, 46855500, 40693900, 25473900, + 38235700, 33951600, 39328700, 24108500, 26466500, 32788400, 29346300, + 44041700, 40493000, 39149700, 32476500, 49339800, 59290900, 43485500, + 137960900, 88770100, 53399000, 37995000, 51232200, 56674900, 45948800, + 40703600, 25723100, 33342900, 45664700, 48879800, 45346200, 39359100, + 34739800, 21181700, 16032200, 26831700, 37610000, 38496900, 57289300, + 41329600, 47746300, 37760200, 33152400, 31065800, 38404500, 26025200, + 36326900, 31099900, 35443200, 36933500, 46983300, 61810400, 54884700, + 47750100, 94489300, 91734900, 140331900, 108315100, 95668600, 106908900 ]), + } + +series = np.array([ 91.50, 94.81, 94.38, 95.09, 93.78, 94.62, 92.53, 92.75, + 90.31, 92.47, 96.12, 97.25, 98.50, 89.88, 91.00, 92.81, 89.16, 89.34, + 91.62, 89.88, 88.38, 87.62, 84.78, 83.00, 83.50, 81.38, 84.44, 89.25, + 86.38, 86.25, 85.25, 87.12, 85.81, 88.97, 88.47, 86.88, 86.81, 84.88, + 84.19, 83.88, 83.38, 85.50, 89.19, 89.44, 91.09, 90.75, 91.44, 89.00, + 91.00, 90.50, 89.03, 88.81, 84.28, 83.50, 82.69, 84.75, 85.66, 86.19, + 88.94, 89.28, 88.62, 88.50, 91.97, 91.50, 93.25, 93.50, 93.16, 91.72, + 90.00, 89.69, 88.88, 85.19, 83.38, 84.88, 85.94, 97.25, 99.88, 104.94, + 106.00, 102.50, 102.41, 104.59, 106.12, 106.00, 106.06, 104.62, 108.62, + 109.31, 110.50, 112.75, 123.00, 119.62, 118.75, 119.25, 117.94, 116.44, + 115.19, 111.88, 110.59, 118.12, 116.00, 116.00, 112.00, 113.75, 112.94, + 116.00, 120.50, 116.62, 117.00, 115.25, 114.31, 115.50, 115.87, 120.69, + 120.19, 120.75, 124.75, 123.37, 122.94, 122.56, 123.12, 122.56, 124.62, + 129.25, 131.00, 132.25, 131.00, 132.81, 134.00, 137.38, 137.81, 137.88, + 137.25, 136.31, 136.25, 134.63, 128.25, 129.00, 123.87, 124.81, 123.00, + 126.25, 128.38, 125.37, 125.69, 122.25, 119.37, 118.50, 123.19, 123.50, + 122.19, 119.31, 123.31, 121.12, 123.37, 127.37, 128.50, 123.87, 122.94, + 121.75, 124.44, 122.00, 122.37, 122.94, 124.00, 123.19, 124.56, 127.25, + 125.87, 128.86, 132.00, 130.75, 134.75, 135.00, 132.38, 133.31, 131.94, + 130.00, 125.37, 130.13, 127.12, 125.19, 122.00, 125.00, 123.00, 123.50, + 120.06, 121.00, 117.75, 119.87, 122.00, 119.19, 116.37, 113.50, 114.25, + 110.00, 105.06, 107.00, 107.87, 107.00, 107.12, 107.00, 91.00, 93.94, + 93.87, 95.50, 93.00, 94.94, 98.25, 96.75, 94.81, 94.37, 91.56, 90.25, + 93.94, 93.62, 97.00, 95.00, 95.87, 94.06, 94.62, 93.75, 98.00, 103.94, + 107.87, 106.06, 104.50, 105.00, 104.19, 103.06, 103.42, 105.27, 111.87, + 116.00, 116.62, 118.28, 113.37, 109.00, 109.70, 109.25, 107.00, 109.19, + 110.00, 109.20, 110.12, 108.00, 108.62, 109.75, 109.81, 109.00, 108.75, + 107.87 ]) + +def assert_np_arrays_equal(expected, got): + for i, value in enumerate(expected): + if np.isnan(value): + assert_true(np.isnan(got[i])) + else: + assert_equal(value, got[i]) + +def assert_np_arrays_not_equal(expected, got): + ''' Verifies expected and got have the same number of leading nan fields, + followed by different floats. + ''' + nans = [] + equals = [] + for i, value in enumerate(expected): + if np.isnan(value): + assert_true(np.isnan(got[i])) + nans.append(value) + else: + try: + assert_not_equal(value, got[i]) + except AssertionError: + equals.append(got[i]) + if len(equals) == len(expected[len(nans):]): + raise AssertionError('Arrays were equal.') + elif equals: + print('Arrays had %i/%i equivalent values.' % (len(equals), len(expected[len(nans):]))) diff --git a/vnpy/talib/test_func.py b/vnpy/talib/test_func.py new file mode 100644 index 00000000..1b78f5b8 --- /dev/null +++ b/vnpy/talib/test_func.py @@ -0,0 +1,143 @@ +import numpy as np +from nose.tools import assert_equals, assert_true, assert_raises + +import talib +from talib import func +from talib.test_data import series, assert_np_arrays_equal, assert_np_arrays_not_equal + +def test_talib_version(): + assert_equals(talib.__ta_version__[:5], b'0.4.0') + +def test_num_functions(): + assert_equals(len(talib.get_functions()), 158) + +def test_input_lengths(): + a1 = np.arange(10, dtype=float) + a2 = np.arange(11, dtype=float) + with assert_raises(Exception): + func.BOP(a2, a1, a1, a1) + with assert_raises(Exception): + func.BOP(a1, a2, a1, a1) + with assert_raises(Exception): + func.BOP(a1, a1, a2, a1) + with assert_raises(Exception): + func.BOP(a1, a1, a1, a2) + +def test_input_nans(): + a1 = np.arange(10, dtype=float) + a2 = np.arange(10, dtype=float) + a2[0] = np.nan + a2[1] = np.nan + r1, r2 = func.AROON(a1, a2, 2) + assert_np_arrays_equal(r1, [np.nan, np.nan, np.nan, np.nan, 0, 0, 0, 0, 0, 0]) + assert_np_arrays_equal(r2, [np.nan, np.nan, np.nan, np.nan, 100, 100, 100, 100, 100, 100]) + r1, r2 = func.AROON(a2, a1, 2) + assert_np_arrays_equal(r1, [np.nan, np.nan, np.nan, np.nan, 0, 0, 0, 0, 0, 0]) + assert_np_arrays_equal(r2, [np.nan, np.nan, np.nan, np.nan, 100, 100, 100, 100, 100, 100]) + +def test_unstable_period(): + a = np.arange(10, dtype=float) + r = func.EMA(a, 3) + assert_np_arrays_equal(r, [np.nan, np.nan, 1, 2, 3, 4, 5, 6, 7, 8]) + talib.set_unstable_period('EMA', 5) + r = func.EMA(a, 3) + assert_np_arrays_equal(r, [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 6, 7, 8]) + talib.set_unstable_period('EMA', 0) + +def test_MIN(): + result = func.MIN(series, timeperiod=4) + i = np.where(~np.isnan(result))[0][0] + assert_equals(len(series), len(result)) + assert_equals(result[i + 1], 93.780) + assert_equals(result[i + 2], 93.780) + assert_equals(result[i + 3], 92.530) + assert_equals(result[i + 4], 92.530) + values = np.array([np.nan, 5., 4., 3., 5., 7.]) + result = func.MIN(values, timeperiod=2) + assert_np_arrays_equal(result, [np.nan, np.nan, 4, 3, 3, 5]) + +def test_MAX(): + result = func.MAX(series, timeperiod=4) + i = np.where(~np.isnan(result))[0][0] + assert_equals(len(series), len(result)) + assert_equals(result[i + 2], 95.090) + assert_equals(result[i + 3], 95.090) + assert_equals(result[i + 4], 94.620) + assert_equals(result[i + 5], 94.620) + +def test_MOM(): + values = np.array([90.0,88.0,89.0]) + result = func.MOM(values, timeperiod=1) + assert_np_arrays_equal(result, [np.nan, -2, 1]) + result = func.MOM(values, timeperiod=2) + assert_np_arrays_equal(result, [np.nan, np.nan, -1]) + result = func.MOM(values, timeperiod=3) + assert_np_arrays_equal(result, [np.nan, np.nan, np.nan]) + result = func.MOM(values, timeperiod=4) + assert_np_arrays_equal(result, [np.nan, np.nan, np.nan]) + +def test_BBANDS(): + upper, middle, lower = func.BBANDS(series, timeperiod=20, + nbdevup=2.0, nbdevdn=2.0, + matype=talib.MA_Type.EMA) + i = np.where(~np.isnan(upper))[0][0] + assert_true(len(upper) == len(middle) == len(lower) == len(series)) + #assert_true(abs(upper[i + 0] - 98.0734) < 1e-3) + assert_true(abs(middle[i + 0] - 92.8910) < 1e-3) + assert_true(abs(lower[i + 0] - 87.7086) < 1e-3) + #assert_true(abs(upper[i + 13] - 93.674) < 1e-3) + assert_true(abs(middle[i + 13] - 87.679) < 1e-3) + assert_true(abs(lower[i + 13] - 81.685) < 1e-3) + +def test_DEMA(): + result = func.DEMA(series) + i = np.where(~np.isnan(result))[0][0] + assert_true(len(series) == len(result)) + assert_true(abs(result[i + 1] - 86.765) < 1e-3) + assert_true(abs(result[i + 2] - 86.942) < 1e-3) + assert_true(abs(result[i + 3] - 87.089) < 1e-3) + assert_true(abs(result[i + 4] - 87.656) < 1e-3) + +def test_EMAEMA(): + result = func.EMA(series, timeperiod=2) + result = func.EMA(result, timeperiod=2) + i = np.where(~np.isnan(result))[0][0] + assert_true(len(series) == len(result)) + assert_equals(i, 2) + +def test_CDL3BLACKCROWS(): + o = np.array([39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 40.32, 40.51, 38.09, 35.00, 27.66, 30.80]) + h = np.array([40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 41.69, 40.84, 38.12, 35.50, 31.74, 32.51]) + l = np.array([35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 39.26, 36.73, 33.37, 30.03, 27.03, 28.31]) + c = np.array([40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.46, 37.08, 33.37, 30.03, 31.46, 28.31]) + + result = func.CDL3BLACKCROWS(o, h, l, c) + assert_np_arrays_equal(result, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -100, 0, 0]) + +def test_RSI(): + a = np.array([0.00000024, 0.00000024, 0.00000024, + 0.00000024, 0.00000024, 0.00000023, + 0.00000024, 0.00000024, 0.00000024, + 0.00000024, 0.00000023, 0.00000024, + 0.00000023, 0.00000024, 0.00000023, + 0.00000024, 0.00000024, 0.00000023, + 0.00000023, 0.00000023], dtype='float64') + result = func.RSI(a, 10) + assert_np_arrays_equal(result, [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,0,0,0,0,0,0,0,0,0,0]) + result = func.RSI(a * 100000, 10) + assert_np_arrays_equal(result, [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,33.333333333333329,51.351351351351347,39.491916859122398,51.84807024709005,42.25953803191981,52.101824405061215,52.101824405061215,43.043664867691085,43.043664867691085,43.043664867691085]) + +def test_MAVP(): + a = np.array([1,5,3,4,7,3,8,1,4,6], dtype=float) + b = np.array([2,4,2,4,2,4,2,4,2,4], dtype=float) + result = func.MAVP(a, b, minperiod=2, maxperiod=4) + assert_np_arrays_equal(result, [np.nan,np.nan,np.nan,3.25,5.5,4.25,5.5,4.75,2.5,4.75]) + sma2 = func.SMA(a, 2) + assert_np_arrays_equal(result[4::2], sma2[4::2]) + sma4 = func.SMA(a, 4) + assert_np_arrays_equal(result[3::2], sma4[3::2]) + result = func.MAVP(a, b, minperiod=2, maxperiod=3) + assert_np_arrays_equal(result, [np.nan,np.nan,4,4,5.5,4.666666666666667,5.5,4,2.5,3.6666666666666665]) + sma3 = func.SMA(a, 3) + assert_np_arrays_equal(result[2::2], sma2[2::2]) + assert_np_arrays_equal(result[3::2], sma3[3::2]) diff --git a/vnpy/talib/test_pandas.py b/vnpy/talib/test_pandas.py new file mode 100644 index 00000000..7c9e8d3b --- /dev/null +++ b/vnpy/talib/test_pandas.py @@ -0,0 +1,50 @@ +import numpy as np +import pandas as pd +from nose.tools import assert_equals, assert_is_instance, assert_true + +import talib +from talib.test_data import series, assert_np_arrays_equal + +def test_MOM(): + values = pd.Series([90.0,88.0,89.0], index=[10, 20, 30]) + result = talib.MOM(values, timeperiod=1) + assert_is_instance(result, pd.Series) + assert_np_arrays_equal(result.values, [np.nan, -2, 1]) + assert_np_arrays_equal(result.index, [10, 20, 30]) + result = talib.MOM(values, timeperiod=2) + assert_is_instance(result, pd.Series) + assert_np_arrays_equal(result.values, [np.nan, np.nan, -1]) + assert_np_arrays_equal(result.index, [10, 20, 30]) + result = talib.MOM(values, timeperiod=3) + assert_is_instance(result, pd.Series) + assert_np_arrays_equal(result.values, [np.nan, np.nan, np.nan]) + assert_np_arrays_equal(result.index, [10, 20, 30]) + result = talib.MOM(values, timeperiod=4) + assert_is_instance(result, pd.Series) + assert_np_arrays_equal(result.values, [np.nan, np.nan, np.nan]) + assert_np_arrays_equal(result.index, [10, 20, 30]) + +def test_MAVP(): + a = pd.Series([1,5,3,4,7,3,8,1,4,6], index=range(10, 20), dtype=float) + b = pd.Series([2,4,2,4,2,4,2,4,2,4], index=range(20, 30), dtype=float) + result = talib.MAVP(a, b, minperiod=2, maxperiod=4) + assert_is_instance(result, pd.Series) + assert_np_arrays_equal(result.values, [np.nan,np.nan,np.nan,3.25,5.5,4.25,5.5,4.75,2.5,4.75]) + assert_np_arrays_equal(result.index, range(10, 20)) + sma2 = talib.SMA(a, 2) + assert_is_instance(sma2, pd.Series) + assert_np_arrays_equal(sma2.index, range(10, 20)) + assert_np_arrays_equal(result.values[4::2], sma2.values[4::2]) + sma4 = talib.SMA(a, 4) + assert_is_instance(sma4, pd.Series) + assert_np_arrays_equal(sma4.index, range(10, 20)) + assert_np_arrays_equal(result.values[3::2], sma4.values[3::2]) + result = talib.MAVP(a, b, minperiod=2, maxperiod=3) + assert_is_instance(result, pd.Series) + assert_np_arrays_equal(result.values, [np.nan,np.nan,4,4,5.5,4.666666666666667,5.5,4,2.5,3.6666666666666665]) + assert_np_arrays_equal(result.index, range(10, 20)) + sma3 = talib.SMA(a, 3) + assert_is_instance(sma3, pd.Series) + assert_np_arrays_equal(sma3.index, range(10, 20)) + assert_np_arrays_equal(result.values[2::2], sma2.values[2::2]) + assert_np_arrays_equal(result.values[3::2], sma3.values[3::2]) diff --git a/vnpy/talib/test_stream.py b/vnpy/talib/test_stream.py new file mode 100644 index 00000000..0abd8dc7 --- /dev/null +++ b/vnpy/talib/test_stream.py @@ -0,0 +1,31 @@ +import numpy as np +from nose.tools import assert_equals, assert_true, assert_raises + +import talib +from talib import stream + +def test_streaming(): + a = np.array([1,1,2,3,5,8,13], dtype=float) + r = stream.MOM(a, timeperiod=1) + assert_equals(r, 5) + r = stream.MOM(a, timeperiod=2) + assert_equals(r, 8) + r = stream.MOM(a, timeperiod=3) + assert_equals(r, 10) + r = stream.MOM(a, timeperiod=4) + assert_equals(r, 11) + r = stream.MOM(a, timeperiod=5) + assert_equals(r, 12) + r = stream.MOM(a, timeperiod=6) + assert_equals(r, 12) + r = stream.MOM(a, timeperiod=7) + assert_true(np.isnan(r)) + +def test_CDL3BLACKCROWS(): + o = np.array([39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 39.00, 40.32, 40.51, 38.09, 35.00]) + h = np.array([40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 40.84, 41.69, 40.84, 38.12, 35.50]) + l = np.array([35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 35.80, 39.26, 36.73, 33.37, 30.03]) + c = np.array([40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.29, 40.46, 37.08, 33.37, 30.03]) + + r = stream.CDL3BLACKCROWS(o, h, l, c) + assert_equals(r, -100) diff --git a/vnpy/trader/utility.py b/vnpy/trader/utility.py index ca788227..0b363b6c 100644 --- a/vnpy/trader/utility.py +++ b/vnpy/trader/utility.py @@ -7,7 +7,11 @@ from pathlib import Path from typing import Callable import numpy as np -import talib + +try: + from vnpy import talib # For windows +except ModuleNotFoundError: + import talib # For linux (needs extra install) from .object import BarData, TickData