[Mod]移除ctaBacktesting中对pandas的依赖
This commit is contained in:
parent
8af3355553
commit
145d5215e7
@ -955,6 +955,7 @@ class BacktestingEngine(object):
|
||||
resultList.sort(reverse=True, key=lambda result:result[1])
|
||||
return resultList
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def outputOptimizeResult(self, resultList):
|
||||
self.output('-' * 30)
|
||||
self.output(u'优化结果:')
|
||||
@ -998,62 +999,67 @@ class BacktestingEngine(object):
|
||||
dailyResult.calculatePnl(openPosition, self.size, self.rate, self.slippage )
|
||||
openPosition = dailyResult.closePosition
|
||||
|
||||
# 生成DataFrame
|
||||
resultDict = {k:[] for k in dailyResult.__dict__.keys()}
|
||||
for dailyResult in self.dailyResultDict.values():
|
||||
for k, v in dailyResult.__dict__.items():
|
||||
resultDict[k].append(v)
|
||||
|
||||
resultDf = pd.DataFrame.from_dict(resultDict)
|
||||
|
||||
# 计算衍生数据
|
||||
resultDf = resultDf.set_index('date')
|
||||
|
||||
return resultDf
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def calculateDailyStatistics(self, df):
|
||||
def calculateDailyStatistics(self, annualDays=240):
|
||||
"""计算按日统计的结果"""
|
||||
df['balance'] = df['netPnl'].cumsum() + self.capital
|
||||
df['return'] = (np.log(df['balance']) - np.log(df['balance'].shift(1))).fillna(0)
|
||||
df['highlevel'] = df['balance'].rolling(min_periods=1,window=len(df),center=False).max()
|
||||
df['drawdown'] = df['balance'] - df['highlevel']
|
||||
df['ddPercent'] = df['drawdown'] / df['highlevel'] * 100
|
||||
dateList = self.dailyResultDict.keys()
|
||||
resultList = self.dailyResultDict.values()
|
||||
|
||||
# 计算统计结果
|
||||
startDate = df.index[0]
|
||||
endDate = df.index[-1]
|
||||
startDate = dateList[0]
|
||||
endDate = dateList[-1]
|
||||
totalDays = len(dateList)
|
||||
|
||||
totalDays = len(df)
|
||||
profitDays = len(df[df['netPnl']>0])
|
||||
lossDays = len(df[df['netPnl']<0])
|
||||
profitDays = 0
|
||||
lossDays = 0
|
||||
endBalance = self.capital
|
||||
highlevel = self.capital
|
||||
totalNetPnl = 0
|
||||
totalTurnover = 0
|
||||
totalCommission = 0
|
||||
totalSlippage = 0
|
||||
totalTradeCount = 0
|
||||
|
||||
endBalance = df['balance'].iloc[-1]
|
||||
maxDrawdown = df['drawdown'].min()
|
||||
maxDdPercent = df['ddPercent'].min()
|
||||
netPnlList = []
|
||||
balanceList = []
|
||||
highlevelList = []
|
||||
drawdownList = []
|
||||
ddPercentList = []
|
||||
returnList = []
|
||||
|
||||
totalNetPnl = df['netPnl'].sum()
|
||||
dailyNetPnl = totalNetPnl / totalDays
|
||||
for result in resultList:
|
||||
if result.netPnl > 0:
|
||||
profitDays += 1
|
||||
elif result.netPnl < 0:
|
||||
lossDays += 1
|
||||
netPnlList.append(result.netPnl)
|
||||
|
||||
totalCommission = df['commission'].sum()
|
||||
dailyCommission = totalCommission / totalDays
|
||||
prevBalance = endBalance
|
||||
endBalance += result.netPnl
|
||||
balanceList.append(endBalance)
|
||||
returnList.append(endBalance/prevBalance - 1)
|
||||
|
||||
totalSlippage = df['slippage'].sum()
|
||||
dailySlippage = totalSlippage / totalDays
|
||||
highlevel = max(highlevel, endBalance)
|
||||
highlevelList.append(highlevel)
|
||||
|
||||
totalTurnover = df['turnover'].sum()
|
||||
dailyTurnover = totalTurnover / totalDays
|
||||
drawdown = endBalance - highlevel
|
||||
drawdownList.append(drawdown)
|
||||
ddPercentList.append(drawdown/highlevel*100)
|
||||
|
||||
totalTradeCount = df['tradeCount'].sum()
|
||||
dailyTradeCount = totalTradeCount / totalDays
|
||||
totalTurnover += result.turnover
|
||||
totalCommission += result.commission
|
||||
totalSlippage += result.slippage
|
||||
totalTradeCount += result.tradeCount
|
||||
totalNetPnl += result.netPnl
|
||||
|
||||
totalReturn = (endBalance/self.capital - 1) * 100
|
||||
annualizedReturn = totalReturn / totalDays * 240
|
||||
dailyReturn = df['return'].mean() * 100
|
||||
returnStd = df['return'].std() * 100
|
||||
maxDrawdown = min(drawdownList)
|
||||
maxDdPercent = min(ddPercentList)
|
||||
totalReturn = (endBalance / self.capital - 1) * 100
|
||||
dailyReturn = np.mean(returnList) * 100
|
||||
annualizedReturn = dailyReturn * annualDays
|
||||
returnStd = np.std(returnList) * 100
|
||||
|
||||
if returnStd:
|
||||
sharpeRatio = dailyReturn / returnStd * np.sqrt(240)
|
||||
sharpeRatio = dailyReturn / returnStd * np.sqrt(annualDays)
|
||||
else:
|
||||
sharpeRatio = 0
|
||||
|
||||
@ -1068,30 +1074,39 @@ class BacktestingEngine(object):
|
||||
'maxDrawdown': maxDrawdown,
|
||||
'maxDdPercent': maxDdPercent,
|
||||
'totalNetPnl': totalNetPnl,
|
||||
'dailyNetPnl': dailyNetPnl,
|
||||
'dailyNetPnl': totalNetPnl/totalDays,
|
||||
'totalCommission': totalCommission,
|
||||
'dailyCommission': dailyCommission,
|
||||
'dailyCommission': totalCommission/totalDays,
|
||||
'totalSlippage': totalSlippage,
|
||||
'dailySlippage': dailySlippage,
|
||||
'dailySlippage': totalSlippage/totalDays,
|
||||
'totalTurnover': totalTurnover,
|
||||
'dailyTurnover': dailyTurnover,
|
||||
'dailyTurnover': totalTurnover/totalDays,
|
||||
'totalTradeCount': totalTradeCount,
|
||||
'dailyTradeCount': dailyTradeCount,
|
||||
'dailyTradeCount': totalTradeCount/totalDays,
|
||||
'totalReturn': totalReturn,
|
||||
'annualizedReturn': annualizedReturn,
|
||||
'dailyReturn': dailyReturn,
|
||||
'returnStd': returnStd,
|
||||
'sharpeRatio': sharpeRatio
|
||||
}
|
||||
}
|
||||
|
||||
return df, result
|
||||
d = {}
|
||||
d['balance'] = balanceList
|
||||
d['return'] = returnList
|
||||
d['highLevel'] = highlevelList
|
||||
d['drawdown'] = drawdownList
|
||||
d['ddPercent'] = ddPercentList
|
||||
d['date'] = dateList
|
||||
d['netPnl'] = netPnlList
|
||||
|
||||
return d, result
|
||||
|
||||
#----------------------------------------------------------------------
|
||||
def showDailyResult(self, df=None, result=None):
|
||||
def showDailyResult(self, d=None, result=None):
|
||||
"""显示按日统计的交易结果"""
|
||||
if df is None:
|
||||
df = self.calculateDailyResult()
|
||||
df, result = self.calculateDailyStatistics(df)
|
||||
if d is None:
|
||||
self.calculateDailyResult()
|
||||
d, result = self.calculateDailyStatistics()
|
||||
|
||||
# 输出统计结果
|
||||
self.output('-' * 30)
|
||||
@ -1131,19 +1146,19 @@ class BacktestingEngine(object):
|
||||
|
||||
pBalance = plt.subplot(4, 1, 1)
|
||||
pBalance.set_title('Balance')
|
||||
df['balance'].plot(legend=True)
|
||||
plt.plot(d['date'], d['balance'])
|
||||
|
||||
pDrawdown = plt.subplot(4, 1, 2)
|
||||
pDrawdown.set_title('Drawdown')
|
||||
pDrawdown.fill_between(range(len(df)), df['drawdown'].values)
|
||||
pDrawdown.fill_between(range(len(d['drawdown'])), d['drawdown'])
|
||||
|
||||
pPnl = plt.subplot(4, 1, 3)
|
||||
pPnl.set_title('Daily Pnl')
|
||||
df['netPnl'].plot(kind='bar', legend=False, grid=False, xticks=[])
|
||||
plt.bar(range(len(d['drawdown'])), d['netPnl'])
|
||||
|
||||
pKDE = plt.subplot(4, 1, 4)
|
||||
pKDE.set_title('Daily Pnl Distribution')
|
||||
df['netPnl'].hist(bins=50)
|
||||
plt.hist(d['netPnl'], bins=50)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user