2017-11-05 13:38:22 +00:00
|
|
|
|
# encoding: UTF-8
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
Black76期权定价模型,主要用于标的物为期货的欧式期权的定价
|
|
|
|
|
|
|
|
|
|
变量说明
|
|
|
|
|
f:标的物期货价格
|
|
|
|
|
k:行权价
|
|
|
|
|
r:无风险利率
|
|
|
|
|
t:剩余到期时间(年)
|
|
|
|
|
v:隐含波动率
|
|
|
|
|
cp:期权类型,+1/-1对应call/put
|
|
|
|
|
price:期权价格
|
|
|
|
|
|
|
|
|
|
出于开发演示的目的,本文件中的希腊值计算基于简单数值差分法,
|
|
|
|
|
运算效率一般,实盘中建议使用更高速的算法。
|
|
|
|
|
|
|
|
|
|
本文件中的希腊值计算结果没有采用传统的模型价格数值,而是采用
|
|
|
|
|
了实盘交易中更为实用的百分比变动数值,具体定义如下
|
|
|
|
|
delta:当f变动1%时,price的变动
|
|
|
|
|
gamma:当f变动1%时,delta的变动
|
|
|
|
|
theta:当t变动1天时,price的变动(国内交易日每年240天)
|
|
|
|
|
vega:当v涨跌1个点时,price的变动(如从16%涨到17%)
|
|
|
|
|
'''
|
|
|
|
|
|
2017-11-30 07:08:35 +00:00
|
|
|
|
from __future__ import division
|
2017-11-05 13:38:22 +00:00
|
|
|
|
|
|
|
|
|
from scipy import stats
|
|
|
|
|
from math import (log, pow, sqrt, exp)
|
|
|
|
|
|
|
|
|
|
cdf = stats.norm.cdf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 计算希腊值和隐含波动率时用的参数
|
|
|
|
|
STEP_CHANGE = 0.001
|
|
|
|
|
STEP_UP = 1 + STEP_CHANGE
|
|
|
|
|
STEP_DOWN = 1 - STEP_CHANGE
|
|
|
|
|
STEP_DIFF = STEP_CHANGE * 2
|
|
|
|
|
|
|
|
|
|
DX_TARGET = 0.00001
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------
|
|
|
|
|
def calculatePrice(f, k, r, t, v, cp):
|
|
|
|
|
"""计算期权价格"""
|
2017-11-30 14:32:09 +00:00
|
|
|
|
# 如果波动率为0,则直接返回期权空间价值
|
|
|
|
|
if v <= 0:
|
|
|
|
|
return max(0, cp * (f - k))
|
|
|
|
|
|
2017-11-05 13:38:22 +00:00
|
|
|
|
d1 = (log(f / k) + (0.5 * pow(v, 2) + r) * t) / (v * sqrt(t))
|
|
|
|
|
d2 = d1 - v * sqrt(t)
|
|
|
|
|
price = cp * (f * cdf(cp * d1) - k * cdf(cp * d2) * exp(-r * t))
|
|
|
|
|
return price
|
|
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------
|
|
|
|
|
def calculateDelta(f, k, r, t, v, cp):
|
|
|
|
|
"""计算Delta值"""
|
|
|
|
|
price1 = calculatePrice(f*STEP_UP, k, r, t, v, cp)
|
|
|
|
|
price2 = calculatePrice(f*STEP_DOWN, k, r, t, v, cp)
|
|
|
|
|
delta = (price1 - price2) / (f * STEP_DIFF) * (f * 0.01)
|
|
|
|
|
return delta
|
|
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------
|
|
|
|
|
def calculateGamma(f, k, r, t, v, cp):
|
|
|
|
|
"""计算Gamma值"""
|
|
|
|
|
delta1 = calculateDelta(f*STEP_UP, k, r, t, v, cp)
|
|
|
|
|
delta2 = calculateDelta(f*STEP_DOWN, k, r, t, v, cp)
|
|
|
|
|
gamma = (delta1 - delta2) / (f * STEP_DIFF) * pow(f, 2) * 0.0001
|
|
|
|
|
return gamma
|
|
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------
|
|
|
|
|
def calculateTheta(f, k, r, t, v, cp):
|
|
|
|
|
"""计算Theta值"""
|
|
|
|
|
price1 = calculatePrice(f, k, r, t*STEP_UP, v, cp)
|
|
|
|
|
price2 = calculatePrice(f, k, r, t*STEP_DOWN, v, cp)
|
2017-11-06 14:26:21 +00:00
|
|
|
|
theta = -(price1 - price2) / (t * STEP_DIFF * 240)
|
2017-11-05 13:38:22 +00:00
|
|
|
|
return theta
|
|
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------
|
|
|
|
|
def calculateVega(f, k, r, t, v, cp):
|
|
|
|
|
"""计算Vega值"""
|
2017-11-30 07:08:35 +00:00
|
|
|
|
vega = calculateVega(f, k, r, t, v, cp) / 100
|
|
|
|
|
return vega
|
|
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------
|
|
|
|
|
def calculateOriginalVega(f, k, r, t, v, cp):
|
|
|
|
|
"""计算原始vega值"""
|
2017-11-05 13:38:22 +00:00
|
|
|
|
price1 = calculatePrice(f, k, r, t, v*STEP_UP, cp)
|
|
|
|
|
price2 = calculatePrice(f, k, r, t, v*STEP_DOWN, cp)
|
2017-11-30 07:08:35 +00:00
|
|
|
|
vega = (price1 - price2) / (v * STEP_DIFF)
|
2017-11-05 13:38:22 +00:00
|
|
|
|
return vega
|
|
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------
|
|
|
|
|
def calculateGreeks(f, k, r, t, v, cp):
|
|
|
|
|
"""计算期权的价格和希腊值"""
|
|
|
|
|
price = calculatePrice(f, k, r, t, v, cp)
|
|
|
|
|
delta = calculateDelta(f, k, r, t, v, cp)
|
|
|
|
|
gamma = calculateGamma(f, k, r, t, v, cp)
|
|
|
|
|
theta = calculateTheta(f, k, r, t, v, cp)
|
|
|
|
|
vega = calculateVega(f, k, r, t, v, cp)
|
|
|
|
|
return price, delta, gamma, theta, vega
|
|
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------
|
|
|
|
|
def calculateImpv(price, f, k, r, t, cp):
|
|
|
|
|
"""计算隐含波动率"""
|
|
|
|
|
# 检查期权价格必须为正数
|
|
|
|
|
if price <= 0:
|
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
# 检查期权价格是否满足最小价值(即到期行权价值)
|
|
|
|
|
meet = False
|
|
|
|
|
|
|
|
|
|
if cp == 1 and (price > (f - k) * exp(-r * t)):
|
|
|
|
|
meet = True
|
|
|
|
|
elif cp == -1 and (price > k * exp(-r * t) - f):
|
|
|
|
|
meet = True
|
|
|
|
|
|
|
|
|
|
# 若不满足最小价值,则直接返回0
|
|
|
|
|
if not meet:
|
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
# 采用Newton Raphson方法计算隐含波动率
|
2017-11-30 07:08:35 +00:00
|
|
|
|
v = 0.3 # 初始波动率猜测
|
2017-11-05 13:38:22 +00:00
|
|
|
|
|
|
|
|
|
for i in range(50):
|
|
|
|
|
# 计算当前猜测波动率对应的期权价格和vega值
|
|
|
|
|
p = calculatePrice(f, k, r, t, v, cp)
|
2017-11-30 14:32:09 +00:00
|
|
|
|
|
2017-11-30 07:08:35 +00:00
|
|
|
|
vega = calculateOriginalVega(f, k, r, t, v, cp)
|
2017-11-05 13:38:22 +00:00
|
|
|
|
|
2017-11-30 14:32:09 +00:00
|
|
|
|
# 如果vega过小接近0,则直接返回
|
|
|
|
|
if not vega:
|
|
|
|
|
return v
|
|
|
|
|
|
2017-11-05 13:38:22 +00:00
|
|
|
|
# 计算误差
|
|
|
|
|
dx = (price - p) / vega
|
|
|
|
|
|
|
|
|
|
# 检查误差是否满足要求,若满足则跳出循环
|
|
|
|
|
if abs(dx) < DX_TARGET:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
# 计算新一轮猜测的波动率
|
|
|
|
|
v += dx
|
|
|
|
|
|
|
|
|
|
# 检查波动率计算结果非负
|
|
|
|
|
if v < 0:
|
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
# 保留4位小数
|
|
|
|
|
v = round(v, 4)
|
|
|
|
|
|
|
|
|
|
return v
|
|
|
|
|
|