vnpy/tests/backtesting/GA_Pre_Final.ipynb

280 lines
9.2 KiB
Plaintext
Raw Normal View History

2019-04-26 14:37:43 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"import multiprocessing\n",
"import numpy as np\n",
"from deap import creator, base, tools, algorithms\n",
2019-05-03 07:17:32 +00:00
"from vnpy.app.cta_strategy.backtesting import BacktestingEngine,OptimizationSetting\n",
"from vnpy.app.cta_strategy.strategies.boll_channel_strategy import BollChannelStrategy\n",
"from vnpy.app.cta_strategy.strategies.atr_rsi_strategy import AtrRsiStrategy\n",
2019-04-26 14:37:43 +00:00
"from datetime import datetime\n",
"import multiprocessing #多进程\n",
"from functools import lru_cache"
]
},
{
"cell_type": "code",
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {},
"outputs": [],
2019-04-26 14:37:43 +00:00
"source": [
"setting = OptimizationSetting()\n",
"#setting.add_parameter('atr_length', 10, 50, 2)\n",
"#setting.add_parameter('atr_ma_length', 10, 50, 2)\n",
"#setting.add_parameter('rsi_length', 4, 50, 2)\n",
"#setting.add_parameter('rsi_entry', 4, 30, 1)\n",
"setting.add_parameter('boll_window', 4, 50, 2)\n",
"#setting.add_parameter('boll_dev', 4, 50, 2)\n",
"setting.add_parameter('cci_window', 4, 50, 2)\n",
"setting.add_parameter('atr_window', 4, 50, 2)\n",
"\n",
"\n",
"local_setting = setting.generate_setting()\n",
"total_sample = len(local_setting)\n",
"print(\"数据总体:\",total_sample)"
]
},
{
"cell_type": "code",
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {},
"outputs": [],
2019-04-26 14:37:43 +00:00
"source": [
"setting_names = random.choice(local_setting).keys()\n",
"setting_names"
]
},
{
"cell_type": "code",
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {},
"outputs": [],
"source": [
"def parameter_generate():\n",
" setting_param = list(random.choice(local_setting).values())\n",
" return setting_param"
]
},
{
"cell_type": "code",
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {},
"outputs": [],
2019-04-26 14:37:43 +00:00
"source": [
"parameter_generate()"
]
},
{
"cell_type": "code",
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {},
"outputs": [],
2019-04-26 14:37:43 +00:00
"source": [
"setting=dict(zip(setting_names,parameter_generate()))\n",
"setting"
]
},
{
"cell_type": "code",
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {},
"outputs": [],
"source": [
"def object_func(strategy_avg):\n",
" \"\"\"\"\"\"\n",
" return run_backtesting(tuple(strategy_avg))\n",
" #return run_backtesting(strategy_avg)\n",
" \n",
"\n",
"@lru_cache(maxsize=1000000)\n",
"def run_backtesting(strategy_avg):\n",
" # 创建回测引擎对象\n",
" engine = BacktestingEngine()\n",
" engine.set_parameters(\n",
" vt_symbol=\"IF88.CFFEX\",\n",
" interval=\"1m\",\n",
" start=datetime(2016, 1, 1),\n",
" end=datetime(2019, 1,1),\n",
" rate=0.3/10000,\n",
" slippage=0.2,\n",
" size=300,\n",
" pricetick=0.2,\n",
" capital=1_000_000,\n",
" )\n",
" \n",
" setting=dict(zip(setting_names,strategy_avg))\n",
" \n",
"\n",
" #加载策略 \n",
" #engine.initStrategy(TurtleTradingStrategy, setting)\n",
" engine.add_strategy(BollChannelStrategy, setting)\n",
" engine.load_data()\n",
" engine.run_backtesting()\n",
" engine.calculate_result()\n",
" result = engine.calculate_statistics(output=False)\n",
"\n",
" return_drawdown_ratio = round(result['return_drawdown_ratio'],2) #收益回撤比\n",
" sharpe_ratio= round(result['sharpe_ratio'],2) #夏普比率\n",
" return return_drawdown_ratio , sharpe_ratio"
]
},
{
"cell_type": "code",
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {},
"outputs": [],
2019-04-26 14:37:43 +00:00
"source": [
"object_func(parameter_generate())"
]
},
{
"cell_type": "code",
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {},
"outputs": [],
"source": [
"target_names = [\"return_drawdown_ratio\" , \"sharpe_ratio\"]\n",
"def show_result(hof):\n",
" for i in range(len(hof)):\n",
" solution = hof[i] \n",
" parameter=dict(zip(setting_names,solution))\n",
" result=dict(zip(target_names,list(object_func(solution))))\n",
" print({**parameter, **result})"
]
},
{
"cell_type": "code",
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {},
"outputs": [],
"source": [
"from time import time\n",
"#设置优化方向:最大化收益回撤比,最大化夏普比率\n",
"creator.create(\"FitnessMax\", base.Fitness, weights=(1.0, 1.0)) # 1.0 求最大值;-1.0 求最小值\n",
"creator.create(\"Individual\", list, fitness=creator.FitnessMax)\n",
"\n",
"def optimize(population=None):\n",
" \"\"\"\"\"\" \n",
" start = time() \n",
" toolbox = base.Toolbox() \n",
"\n",
" # 初始化 \n",
" toolbox.register(\"individual\", tools.initIterate, creator.Individual,parameter_generate) \n",
" toolbox.register(\"population\", tools.initRepeat, list, toolbox.individual) \n",
" toolbox.register(\"mate\", tools.cxTwoPoint) \n",
" toolbox.register(\"mutate\", tools.mutUniformInt,low = 4,up = 40,indpb=1) \n",
" toolbox.register(\"evaluate\", object_func) \n",
" toolbox.register(\"select\", tools.selNSGA2) \n",
2019-05-03 07:17:32 +00:00
" pool = multiprocessing.Pool(multiprocessing.cpu_count())\n",
" toolbox.register(\"map\", pool.map)\n",
2019-04-26 14:37:43 +00:00
" #toolbox.register(\"map\", futures.map)\n",
" \n",
" \n",
" #遗传算法参数设置\n",
" MU = 80 #设置每一代选择的个体数\n",
" LAMBDA = 100 #设置每一代产生的子女数\n",
" POP=100\n",
" CXPB, MUTPB, NGEN = 0.95, 0.05,30 #分别为种群内部个体的交叉概率、变异概率、产生种群代数\n",
" \n",
" if population==None:\n",
" LAMBDA = POP = int(pow(total_sample, 1/2.7))\n",
" MU = int(0.8*POP) \n",
" \n",
" pop = toolbox.population(POP) #设置族群里面的个体数量\n",
" hof = tools.ParetoFront() #解的集合:帕累托前沿(非占优最优集)\n",
"\n",
" stats = tools.Statistics(lambda ind: ind.fitness.values)\n",
" np.set_printoptions(suppress=True) #对numpy默认输出的科学计数法转换\n",
" stats.register(\"mean\", np.mean, axis=0) #统计目标优化函数结果的平均值\n",
" stats.register(\"std\", np.std, axis=0) #统计目标优化函数结果的标准差\n",
" stats.register(\"min\", np.min, axis=0) #统计目标优化函数结果的最小值\n",
" stats.register(\"max\", np.max, axis=0) #统计目标优化函数结果的最大值\n",
" print(\"开始运行遗传算法,每代族群总数:%s, 优良品种筛选个数:%s迭代次数%s交叉概率%s突变概率%s\" %(POP,MU,NGEN,CXPB,MUTPB))\n",
" \n",
"\n",
" #运行算法\n",
" algorithms.eaMuPlusLambda(pop, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN, stats,\n",
" halloffame=hof) #esMuPlusLambda是一种基于(μ+λ)选择策略的多目标优化分段遗传算法\n",
"\n",
" end = time()\n",
" cost = int((end - start))\n",
"\n",
" print(\"遗传算法优化完成,耗时%s秒\"% (cost))\n",
" print(\"输出帕累托前沿解集:\")\n",
" show_result(hof)\n",
" "
]
},
{
"cell_type": "code",
2019-05-03 07:17:32 +00:00
"execution_count": null,
2019-04-26 14:37:43 +00:00
"metadata": {
"scrolled": false
},
"outputs": [],
2019-04-26 14:37:43 +00:00
"source": [
"optimize()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
" MU = 80 #设置每一代选择的个体数\n",
" POP = 100 #设置每一代产生的子女数\n",
" CXPB, MUTPB, NGEN = 0.95, 0.05,20 \n",
" print(\"开始运行遗传算法,每代族群总数:%s, 优良品种筛选个数:%s迭代次数%s交叉概率%s突变概率%s\" %(POP,MU,NGEN,CXPB,MUTPB))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}