vnpy/examples/TurtleStrategy/.ipynb_checkpoints/run-checkpoint.ipynb

150 lines
17 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"from datetime import datetime\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from turtleEngine import BacktestingEngine"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
2018-11-11 07:25:59 +00:00
"outputs": [],
"source": [
"engine = BacktestingEngine()\n",
"engine.setPeriod(datetime(2015, 1, 1), datetime(2018, 11, 9))\n",
2018-11-11 07:25:59 +00:00
"engine.initPortfolio('setting.csv', 10000000)"
]
},
{
"cell_type": "code",
2018-11-11 07:25:59 +00:00
"execution_count": 3,
"metadata": {
"scrolled": false
},
2018-11-11 07:25:59 +00:00
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"15:22:46.074000:000300.XSHG数据加载完成总数据量940\n",
"15:22:46.074000:全部数据加载完成\n"
]
}
],
"source": [
"engine.loadData()\n",
"engine.runBacktesting()\n",
"engine.calculateResult()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"for dt, l in engine.tradeDict.items():\n",
" print dt\n",
" for trade in l:\n",
" print trade.vtSymbol, trade.direction, trade.offset, trade.price, trade.volume"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"for result in engine.resultList:\n",
" if result.totalPnl:\n",
" print result.date, result.totalPnl"
]
},
{
"cell_type": "code",
2018-11-11 07:25:59 +00:00
"execution_count": 4,
"metadata": {
"scrolled": true
},
2018-11-11 07:25:59 +00:00
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x8190eb0>]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEDCAYAAAA849PJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8m+W99/HPz7Lkve0QZzh7FggEEwi0NIQwCgVaSimhD4dOSgstLeWU0T6l6zylk1HSlnScAx1AS+FAKauBsMNIIEASyF7OtB3He/t6/pCseCa2JUuW9H2/Xnrlvi9d0n1JkfXTtc05h4iIJJ6kaBdARESiQwFARCRBKQCIiCQoBQARkQSlACAikqAUAEREEtSIDwBm9kcz229mawaQ9zYzWx24bTCzg5Eoo4hILLKRPg/AzE4D6oB7nXNHD+JxXwWOd859btgKJyISw0Z8DcA59wJwoGuamU0xsyfNbJWZvWhmM/t46GLgvogUUkQkBiVHuwBDtBS4yjm30cxOAn4NLOy808wmAJOAZ6NUPhGRES/mAoCZZQKnAH83s87klB7ZLgUedM61R7JsIiKxJOYCAP5mq4POueMOk+dS4OoIlUdEJCaN+D6AnpxzNcBWM/skgPnN6bzfzGYAecCKKBVRRCQmjPgAYGb34f8yn2FmZWb2eeDTwOfN7G1gLXBhl4csBu53I314k4hIlI34YaAiIjI8RnwNQEREhseI7gQuLCx0EydOjHYxRERixqpVqyqcc0UDyTuiA8DEiRNZuXJltIshIhIzzGz7QPOqCUhEJEEpAIiIJCgFABGRBKUAICKSoBQAREQSlAKAiEiCUgAQEUlQCgBDsGzdPnYfbIx2MUREQqIAMEgdHY4v3LuSU259ln++vTvaxRERGTIFgEGqbW4LHn/1vreiWBIRkdAoAAzSH17cEu0iiIiEhQLAIN357KZoF0FEJCwUAAahqfXQFsMTCtJJ83qiWBoRkdAoAAzCwYZWAMbnp/HRY4tpbG1HG+qISKxSABiE6kZ/ALjxnFlkpngBaG7riGaRRESGTAFgEDoDQE6alzSv/63r2iwkIhJLFAAGYcO+WgBy072kBtr/GxUARCRGKQAMwnf+dw3grwGkp/g3U6vvMi9ARCSWKAAMUGv7obb+7DQvBRk+ACrrWqJVJBGRkCgADNCB+kNf9FkpyRRk+gNAhQKAiMQoBYABKq9tDh4nJRmFmSkAVNY39/cQEZERTQFggDrnAHx90TQA8tJ9JBlU1CoAiEhsUgAYoLpmfwA4+wOjAfAkGfkZPirq1QQkIrFJAWCA3tp5EIDMwOgfgIKMFNUARCRmJR85i9Q1t3H38/5VQLNSD71lhVk+nn1/P8f94Olej2loaefykycwNjeNy+dPwOtRrBWRkUUBYADW7KoOHmd0qQFcc/o0phbt6ZW/pd1x3+s7+MNLWwGYWZzFKVMKh7+gIiKDEJYAYGbnAHcAHuD3zrlbe9yfAtwLnABUAp9yzm0Lx7UjoesIoK6/5OdPKWD+lII+H3PBnDE8uKqMf7xZRk2jJouJyMgTcruEmXmAJcBHgNnAYjOb3SPb54Eq59xU4DbgJ6FeN5I6A8C1Z0wb8GPmTyngurOmA1DdqI5iERl5wlEDmAdscs5tATCz+4ELgXVd8lwIfC9w/CBwl5mZG6a1lDftryVcz+xLTmJ/bTNejwWHgA5Ubpp/xdDOIaQiIiNJOALAWGBnl/My4KT+8jjn2sysGigAKsJw/V7O/9XLYV2kLd3noSgzBTMb9ON8niSqFABEZAQKRwDo61ux5+/vgeTxZzS7ErgSoKSkZEgF+uUlc2gPQxXAOf/G7w0t7TS0DD6gmBlFWSnsr2nqlv7Qm2V4kowLjxsbchlFRIYqHAGgDBjf5XwcsLufPGVmlgzkAAf6ejLn3FJgKUBpaemQvsU/ckzxUB7Wp6/e91ZIjy/OSWVnVUO3tOv+9jaAAoCIRFU4Bqe/AUwzs0lm5gMuBR7tkedR4IrA8cXAs8PV/h9uz3zzwxRmpvCzi48d0uNH56TyxrYqdlQ2HDmziEgEhRwAnHNtwDXAU8B7wN+cc2vN7AdmdkEg2x+AAjPbBFwH3BjqdSNlSlEmK7+ziE+Wjj9y5j58/Hj/r/xXt1aGs1giIiELyzwA59zjwOM90r7b5bgJ+GQ4rhVrTp8xitx0Lys2V3JJjyDinBt0x7KISLhofYJhlpRkLJhexIsby3HOcenSFcH7htKxLCISLgoAETB3Qh4VdS3srm7i1S2H+r6fW19OW5edxkREIkkBIAKOHZcLwDuBFUU7Xf3XN/nWg+9Eo0giIgoAkTCrOAuA9ftqe9332Lu9F5MTEYkEBYAISEn2kJWSzL7AhLAL5owJ3qcuYBGJFgWACMlO87I9MBdg6qjMYHpzWwfr9/auGXSqa27j1S0aQioi4af9ACIkKzWZVzb7v8inH5XV7b6zb3+BX14yB09S7/rADf94h6bWDlZ+Z1FwI3oRkXBQAIiQrovTFWb6gseL543nvtd3BpeH6M/e6iYFABEJKwWACKluPLQiaF6Gj5dvXIjXY6zYXMl9r+/kjJmjuPm8Wd0ec+sT7/PvdfsA2F/bBOTw5o4qXthQztcXBfYaaGglJ90bsdchIvFDfQAR8sUPTQ4e56f7GJubxqisVM6cfRSL543n1k8cy5SizG638Xnpwcfsr/FvSnPRr1/h9mUbaWnrYMXmSub84GmeXLM34q9HRGKfAkCEXH361OBxTtqhX+zpvmR+fNGxFGX1bt7pmm/FlkqWLN8UPL/sd6+y+HevAvC4hpKKyBCoCSgKkvro7O1LfsahAPDI6u4rbK/cXhU83nFAK42KyOCpBjCCXXzCeH796bmMzU3rN89Fc8eyvbI+gqUSkXihGkAE/fBjR1PdMPAN4tN8Hs49ppjXtlRyz4rtwfSnv3EaT6/dy/Eleby7q5qH3txFbVMrWanqDBaRgVMAiKDLT54wpMfdfN4szj2mmLtf2MKUogymH5UVnEvQueH8zgONzB6jACAiA6cAEANSkj2cNLmAkyYX9LpvfL6/eWhnVQOzx2RHumgiEsMUAGJcSb5/qOgvn97A/a/vGPLzTCnK5MsLplCgyWYiCUMBIMblpHn5+PFj2VxeR2X9wPsXumpp62D5+nL21zZz5+Ljw1xCERmpFABinJlx26eOC/l5bnjwHR5fs4e29g6SPRocJpII9JcuAJw2vYjapjau+vOqaBdFRCJEAUAA+PCMIgCWvbef9g4X5dKISCQoAAgAmSnJ3HzuTKD7yqUAre0dzP7ukzy4qiwaRRORYaIAIEFpPn+XUENzW7f0/bXNNLS088PH1kWjWCIyTBQAJCjD5wGgoaV7DWB/YCvL6sbWbstai0hsUwCQoPRAAKhv6V4D6LrY3OG2rxSR2KIAIEHpgSagxh41gKcDm9IAXHL3Cr5631sRLZeIDA8FAAlK76cJqKaxlTSvJ3j+z7e7L00tIrFJAUCCOjel2dZjeemGlnbmTsjlV4FZwskD3M9AREY2BQAJKslPZ2xuGq9vPdAtvbGlnTRvMufPGcMXPzSJZM/gA0BFXTMdml8gMqIoAEiQmVGSn87ug43d0pta20kLNA8VZKbQ1Npx2NFAzvm/6HdUNvCDf67jpY0VnPhfy7j1yfeHr/AiMmhaC0i6GZObxiubK4Ln+2ua2FJRz4kT8wGYMy4XgNN+uhxvoCYwKiuVy+dP4OgxOVxz35tsr2xgxU0LuXfFNv748lb++PJWAJ5Ys4ebz50V2RckIv1SAJBuCrN83VYVPffOFwGCNYB5k/L52sKpwTwNLe0sW7ePmx56t9vzXPPXt3hvT023tL3VTVpsTmQEUQCQblKTPbS0deCc4/v/XEdFnf+LvqzK3yzkSTKuO2tGt8e0tXfwmf9+A0+S8fyGcgBWddm0HiAlOYnmtg721TYfdo9jEYkc/RSTblK8/o9EdWMr//PKtmD6iRPz+n1MsieJP3/hJO753Dy2/vjcbvd9Y9F0gOA+Azu7TCoTkehSAJBuUpP9TT1n3/5
"text/plain": [
"<matplotlib.figure.Figure at 0x8127530>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"l = [result.totalPnl for result in engine.resultList]\n",
"equity = np.cumsum(l)\n",
"plt.plot(equity)"
]
},
2018-11-11 07:25:59 +00:00
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}