2019-10-31 03:48:08 +00:00
|
|
|
|
from datetime import datetime
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pandas as pd
|
|
|
|
|
from pandas import DataFrame
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
from statsmodels.stats.diagnostic import acorr_ljungbox
|
|
|
|
|
from statsmodels.tsa.stattools import adfuller as ADF
|
|
|
|
|
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
|
|
|
|
|
import talib
|
|
|
|
|
|
|
|
|
|
from vnpy.trader.constant import Exchange, Interval
|
|
|
|
|
from vnpy.trader.database import database_manager
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DataAnalysis:
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
""""""
|
|
|
|
|
self.symbol = ""
|
|
|
|
|
self.exchange = None
|
|
|
|
|
self.interval = None
|
|
|
|
|
self.start = None
|
|
|
|
|
self.end = None
|
|
|
|
|
self.rate = 0.0
|
|
|
|
|
|
|
|
|
|
self.window_volatility = 20
|
|
|
|
|
self.window_index = 20
|
|
|
|
|
|
|
|
|
|
self.orignal = pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
self.index_1to1 = []
|
2019-11-07 07:33:48 +00:00
|
|
|
|
self.index_2to2 = []
|
2019-10-31 03:48:08 +00:00
|
|
|
|
self.index_3to1 = []
|
|
|
|
|
self.index_2to1 = []
|
|
|
|
|
self.index_4to1 = []
|
|
|
|
|
self.intervals = []
|
|
|
|
|
|
|
|
|
|
self.results = {}
|
|
|
|
|
|
|
|
|
|
def load_history(
|
|
|
|
|
self,
|
2019-11-07 07:33:48 +00:00
|
|
|
|
symbol: str,
|
|
|
|
|
exchange: Exchange,
|
|
|
|
|
interval: Interval,
|
|
|
|
|
start: datetime,
|
2019-10-31 03:48:08 +00:00
|
|
|
|
end: datetime,
|
|
|
|
|
rate: float = 0.0,
|
|
|
|
|
index_1to1: list = None,
|
|
|
|
|
index_2to2: list = None,
|
|
|
|
|
index_3to1: list = None,
|
|
|
|
|
index_2to1: list = None,
|
|
|
|
|
index_4to1: list = None,
|
|
|
|
|
window_index: int = 20,
|
|
|
|
|
window_volatility: int = 20,
|
|
|
|
|
|
|
|
|
|
):
|
2019-11-07 07:33:48 +00:00
|
|
|
|
""""""
|
2019-10-31 03:48:08 +00:00
|
|
|
|
output("开始加载历史数据")
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
self.window_volatility = window_volatility
|
|
|
|
|
self.window_index = window_index
|
|
|
|
|
self.rate = rate
|
|
|
|
|
self.index_1to1 = index_1to1
|
|
|
|
|
self.index_2to2 = index_2to2
|
|
|
|
|
self.index_3to1 = index_3to1
|
|
|
|
|
self.index_2to1 = index_2to1
|
|
|
|
|
self.index_4to1 = index_4to1
|
|
|
|
|
|
2019-11-07 07:33:48 +00:00
|
|
|
|
# Load history data from database
|
|
|
|
|
bars = database_manager.load_bar_data(
|
|
|
|
|
symbol=symbol,
|
|
|
|
|
exchange=exchange,
|
|
|
|
|
interval=interval,
|
|
|
|
|
start=start,
|
2019-10-31 03:48:08 +00:00
|
|
|
|
end=end,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
output(f"历史数据加载完成,数据量:{len(bars)}")
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
# Generate history data in DataFrame
|
|
|
|
|
t = []
|
|
|
|
|
o = []
|
|
|
|
|
h = []
|
2019-11-07 07:33:48 +00:00
|
|
|
|
l = [] # noqa
|
2019-10-31 03:48:08 +00:00
|
|
|
|
c = []
|
|
|
|
|
v = []
|
|
|
|
|
|
|
|
|
|
for bar in bars:
|
|
|
|
|
time = bar.datetime
|
|
|
|
|
open_price = bar.open_price
|
|
|
|
|
high_price = bar.high_price
|
|
|
|
|
low_price = bar.low_price
|
|
|
|
|
close_price = bar.close_price
|
|
|
|
|
volume = bar.volume
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
t.append(time)
|
|
|
|
|
o.append(open_price)
|
|
|
|
|
h.append(high_price)
|
|
|
|
|
l.append(low_price)
|
2019-11-07 07:33:48 +00:00
|
|
|
|
c.append(close_price)
|
2019-10-31 03:48:08 +00:00
|
|
|
|
v.append(volume)
|
|
|
|
|
|
|
|
|
|
self.orignal["open"] = o
|
|
|
|
|
self.orignal["high"] = h
|
|
|
|
|
self.orignal["low"] = l
|
|
|
|
|
self.orignal["close"] = c
|
|
|
|
|
self.orignal["volume"] = v
|
|
|
|
|
self.orignal.index = t
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
def base_analysis(self, df: DataFrame = None):
|
|
|
|
|
""""""
|
|
|
|
|
if df is None:
|
|
|
|
|
df = self.orignal
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
if df is None:
|
|
|
|
|
output("数据为空,请输入数据")
|
|
|
|
|
|
|
|
|
|
close_price = df["close"]
|
|
|
|
|
|
|
|
|
|
output("第一步:画出行情图,检查数据断点")
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
close_price.plot(figsize=(20, 8), title="close_price")
|
|
|
|
|
plt.show()
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
random_test(close_price)
|
|
|
|
|
stability_test(close_price)
|
|
|
|
|
autocorrelation_test(close_price)
|
|
|
|
|
|
|
|
|
|
self.relative_volatility_analysis(df)
|
|
|
|
|
self.growth_analysis(df)
|
|
|
|
|
|
|
|
|
|
self.calculate_index(df)
|
|
|
|
|
|
|
|
|
|
return df
|
|
|
|
|
|
|
|
|
|
def relative_volatility_analysis(self, df: DataFrame = None):
|
|
|
|
|
"""
|
|
|
|
|
相对波动率
|
|
|
|
|
"""
|
|
|
|
|
output("第五步:相对波动率分析")
|
|
|
|
|
df["volatility"] = talib.ATR(
|
|
|
|
|
np.array(df["high"]),
|
|
|
|
|
np.array(df["low"]),
|
|
|
|
|
np.array(df["close"]),
|
|
|
|
|
self.window_volatility
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
df["fixed_cost"] = df["close"] * self.rate
|
|
|
|
|
df["relative_vol"] = df["volatility"] - df["fixed_cost"]
|
|
|
|
|
|
|
|
|
|
df["relative_vol"].plot(figsize=(20, 6), title="relative volatility")
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
df["relative_vol"].hist(bins=200, figsize=(20, 6), grid=False)
|
|
|
|
|
plt.show()
|
|
|
|
|
|
2019-11-07 07:33:48 +00:00
|
|
|
|
statitstic_info(df["relative_vol"])
|
2019-10-31 03:48:08 +00:00
|
|
|
|
|
|
|
|
|
def growth_analysis(self, df: DataFrame = None):
|
|
|
|
|
"""
|
|
|
|
|
百分比K线变化率
|
|
|
|
|
"""
|
|
|
|
|
output("第六步:变化率分析")
|
|
|
|
|
df["pre_close"] = df["close"].shift(1).fillna(0)
|
|
|
|
|
df["g%"] = 100 * (df["close"] - df["pre_close"]) / df["close"]
|
|
|
|
|
|
|
|
|
|
df["g%"].plot(figsize=(20, 6), title="growth", ylim=(-5, 5))
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
df["g%"].hist(bins=200, figsize=(20, 6), grid=False)
|
|
|
|
|
plt.show()
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
|
|
|
|
statitstic_info(df["g%"])
|
2019-10-31 03:48:08 +00:00
|
|
|
|
|
|
|
|
|
def calculate_index(self, df: DataFrame = None):
|
|
|
|
|
""""""
|
|
|
|
|
output("第七步:计算相关技术指标,返回DataFrame\n")
|
|
|
|
|
|
|
|
|
|
if self.index_1to1:
|
|
|
|
|
for i in self.index_1to1:
|
|
|
|
|
func = getattr(talib, i)
|
|
|
|
|
df[i] = func(
|
2019-11-07 07:33:48 +00:00
|
|
|
|
np.array(df["close"]),
|
2019-10-31 03:48:08 +00:00
|
|
|
|
self.window_index
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.index_3to1:
|
|
|
|
|
for i in self.index_3to1:
|
|
|
|
|
func = getattr(talib, i)
|
2019-11-07 07:33:48 +00:00
|
|
|
|
df[i] = func(
|
2019-10-31 03:48:08 +00:00
|
|
|
|
np.array(df["high"]),
|
|
|
|
|
np.array(df["low"]),
|
|
|
|
|
np.array(df["close"]),
|
|
|
|
|
self.window_index
|
|
|
|
|
)
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
if self.index_2to2:
|
|
|
|
|
for i in self.index_2to2:
|
|
|
|
|
func = getattr(talib, i)
|
|
|
|
|
result_down, result_up = func(
|
|
|
|
|
np.array(df["high"]),
|
|
|
|
|
np.array(df["low"]),
|
|
|
|
|
self.window_index
|
|
|
|
|
)
|
|
|
|
|
up = i + "_UP"
|
|
|
|
|
down = i + "_DOWN"
|
|
|
|
|
df[up] = result_up
|
|
|
|
|
df[down] = result_down
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
if self.index_2to1:
|
|
|
|
|
for i in self.index_2to1:
|
|
|
|
|
func = getattr(talib, i)
|
|
|
|
|
df[i] = func(
|
|
|
|
|
np.array(df["high"]),
|
|
|
|
|
np.array(df["low"]),
|
|
|
|
|
self.window_index
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.index_4to1:
|
|
|
|
|
for i in self.index_4to1:
|
|
|
|
|
func = getattr(talib, i)
|
2019-11-07 07:33:48 +00:00
|
|
|
|
df[i] = func(
|
|
|
|
|
np.array(df["open"]),
|
2019-10-31 03:48:08 +00:00
|
|
|
|
np.array(df["high"]),
|
|
|
|
|
np.array(df["low"]),
|
|
|
|
|
np.array(df["close"]),
|
|
|
|
|
)
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
return df
|
|
|
|
|
|
|
|
|
|
def multi_time_frame_analysis(self, intervals: list = None, df: DataFrame = None):
|
|
|
|
|
""""""
|
|
|
|
|
if not intervals:
|
|
|
|
|
output("请输入K线合成周期")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
if df is None:
|
|
|
|
|
df = self.orignal
|
|
|
|
|
|
|
|
|
|
if df is None:
|
|
|
|
|
output("请先加载数据")
|
|
|
|
|
return
|
|
|
|
|
|
2019-11-07 07:33:48 +00:00
|
|
|
|
for interval in intervals:
|
|
|
|
|
output("------------------------------------------------")
|
2019-10-31 03:48:08 +00:00
|
|
|
|
output(f"合成{interval}周期K先并开始数据分析")
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
data = pd.DataFrame()
|
|
|
|
|
data["open"] = df["open"].resample(interval, how="first")
|
|
|
|
|
data["high"] = df["high"].resample(interval, how="max")
|
|
|
|
|
data["low"] = df["low"].resample(interval, how="min")
|
|
|
|
|
data["close"] = df["close"].resample(interval, how="last")
|
|
|
|
|
data["volume"] = df["volume"].resample(interval, how="sum")
|
|
|
|
|
|
|
|
|
|
result = self.base_analysis(data)
|
|
|
|
|
self.results[interval] = result
|
|
|
|
|
|
|
|
|
|
def show_chart(self, data, boll_wide):
|
2019-11-07 07:33:48 +00:00
|
|
|
|
""""""
|
2019-10-31 03:48:08 +00:00
|
|
|
|
data["boll_up"] = data["SMA"] + data["STDDEV"] * boll_wide
|
|
|
|
|
data["boll_down"] = data["SMA"] - data["STDDEV"] * boll_wide
|
|
|
|
|
|
|
|
|
|
up_signal = []
|
|
|
|
|
down_signal = []
|
2019-11-07 07:33:48 +00:00
|
|
|
|
len_data = len(data["close"])
|
2019-10-31 03:48:08 +00:00
|
|
|
|
for i in range(1, len_data):
|
2019-11-07 07:33:48 +00:00
|
|
|
|
if data.iloc[i]["close"] > data.iloc[i]["boll_up"]and data.iloc[i - 1]["close"] < data.iloc[i - 1]["boll_up"]:
|
2019-10-31 03:48:08 +00:00
|
|
|
|
up_signal.append(i)
|
|
|
|
|
|
2019-11-07 07:33:48 +00:00
|
|
|
|
elif data.iloc[i]["close"] < data.iloc[i]["boll_down"] and data.iloc[i - 1]["close"] > data.iloc[i - 1]["boll_down"]:
|
2019-10-31 03:48:08 +00:00
|
|
|
|
down_signal.append(i)
|
|
|
|
|
|
2019-11-07 07:33:48 +00:00
|
|
|
|
plt.figure(figsize=(20, 8))
|
2019-10-31 03:48:08 +00:00
|
|
|
|
close = data["close"]
|
|
|
|
|
plt.plot(close, lw=1)
|
2019-11-07 07:33:48 +00:00
|
|
|
|
plt.plot(close, '^', markersize=5, color='r',
|
|
|
|
|
label='UP signal', markevery=up_signal)
|
|
|
|
|
plt.plot(close, 'v', markersize=5, color='g',
|
|
|
|
|
label='DOWN signal', markevery=down_signal)
|
2019-10-31 03:48:08 +00:00
|
|
|
|
plt.plot(data["boll_up"], lw=0.5, color="r")
|
|
|
|
|
plt.plot(data["boll_down"], lw=0.5, color="g")
|
|
|
|
|
plt.legend()
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
data["ATR"].plot(figsize=(20, 3), title="ATR")
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def random_test(close_price):
|
|
|
|
|
""""""
|
|
|
|
|
acorr_result = acorr_ljungbox(close_price, lags=1)
|
|
|
|
|
p_value = acorr_result[1]
|
|
|
|
|
if p_value < 0.05:
|
|
|
|
|
output("第二步:随机性检验:非纯随机性")
|
|
|
|
|
else:
|
|
|
|
|
output("第二步:随机性检验:纯随机性")
|
|
|
|
|
output(f"白噪声检验结果:{acorr_result}\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def stability_test(close_price):
|
|
|
|
|
""""""
|
|
|
|
|
statitstic = ADF(close_price)
|
|
|
|
|
t_s = statitstic[1]
|
|
|
|
|
t_c = statitstic[4]["10%"]
|
|
|
|
|
|
|
|
|
|
if t_s > t_c:
|
|
|
|
|
output("第三步:平稳性检验:存在单位根,时间序列不平稳")
|
|
|
|
|
else:
|
|
|
|
|
output("第三步:平稳性检验:不存在单位根,时间序列平稳")
|
|
|
|
|
|
|
|
|
|
output(f"ADF检验结果:{statitstic}\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def autocorrelation_test(close_price):
|
|
|
|
|
""""""
|
|
|
|
|
output("第四步:画出自相关性图,观察自相关特性")
|
|
|
|
|
|
|
|
|
|
plot_acf(close_price, lags=60)
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
plot_pacf(close_price, lags=60).show()
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def statitstic_info(df):
|
|
|
|
|
""""""
|
|
|
|
|
mean = round(df.mean(), 4)
|
2019-11-07 07:33:48 +00:00
|
|
|
|
median = round(df.median(), 4)
|
2019-10-31 03:48:08 +00:00
|
|
|
|
output(f"样本平均数:{mean}, 中位数: {median}")
|
|
|
|
|
|
|
|
|
|
skew = round(df.skew(), 4)
|
|
|
|
|
kurt = round(df.kurt(), 4)
|
|
|
|
|
|
|
|
|
|
if skew == 0:
|
|
|
|
|
skew_attribute = "对称分布"
|
|
|
|
|
elif skew > 0:
|
|
|
|
|
skew_attribute = "分布偏左"
|
|
|
|
|
else:
|
|
|
|
|
skew_attribute = "分布偏右"
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
if kurt == 0:
|
|
|
|
|
kurt_attribute = "正态分布"
|
|
|
|
|
elif kurt > 0:
|
|
|
|
|
kurt_attribute = "分布陡峭"
|
|
|
|
|
else:
|
|
|
|
|
kurt_attribute = "分布平缓"
|
2019-11-07 07:33:48 +00:00
|
|
|
|
|
2019-10-31 03:48:08 +00:00
|
|
|
|
output(f"偏度为:{skew},属于{skew_attribute};峰度为:{kurt},属于{kurt_attribute}\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def output(msg):
|
|
|
|
|
"""
|
|
|
|
|
Output message of backtesting engine.
|
|
|
|
|
"""
|
|
|
|
|
print(f"{datetime.now()}\t{msg}")
|