vnpy/tests/backtesting/turtle.ipynb

171 lines
5.5 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#%%\n",
"from vnpy.app.cta_strategy.backtesting import BacktestingEngine, OptimizationSetting\n",
2019-03-27 06:44:48 +00:00
"from vnpy.app.cta_strategy.strategies.atr_rsi_strategy import (\n",
" AtrRsiStrategy,\n",
")\n",
"from datetime import datetime"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#%%\n",
"engine = BacktestingEngine()\n",
"engine.set_parameters(\n",
" vt_symbol=\"IF88.CFFEX\",\n",
" interval=\"1m\",\n",
" start=datetime(2019, 1, 1),\n",
2019-03-27 06:44:48 +00:00
" end=datetime(2019, 4, 30),\n",
" rate=0.3/10000,\n",
" slippage=0.2,\n",
" size=300,\n",
" pricetick=0.2,\n",
" capital=1_000_000,\n",
")\n",
"engine.add_strategy(AtrRsiStrategy, {})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"#%%\n",
"engine.load_data()\n",
"engine.run_backtesting()\n",
"df = engine.calculate_result()\n",
"engine.calculate_statistics()\n",
"engine.show_chart()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
2019-05-15 04:07:08 +00:00
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2019-05-03 16:19:04.193703\t开始运行遗传算法每代族群总数11, 优良品种筛选个数8迭代次数30交叉概率0.95突变概率0.050000000000000044\n",
"gen\tnevals\tmean \tstd \tmin \tmax \n",
"0 \t11 \t[0.58423524]\t[0.30377007]\t[0.13231977]\t[1.2382818]\n",
"1 \t11 \t[0.90248989]\t[0.15747112]\t[0.68707859]\t[1.2382818]\n",
"2 \t11 \t[1.09406088]\t[0.18860523]\t[0.86284921]\t[1.46762684]\n",
"3 \t11 \t[1.21413386]\t[0.12138014]\t[1.02072108]\t[1.46762684]\n",
"4 \t11 \t[1.29561806]\t[0.09930932]\t[1.2382818] \t[1.46762684]\n",
"5 \t11 \t[1.41029058]\t[0.09930932]\t[1.2382818] \t[1.46762684]\n",
"6 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"7 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"8 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"9 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"10 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"11 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"12 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"13 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"14 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"15 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"16 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"17 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"18 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"19 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"20 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"21 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"22 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"23 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"24 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"25 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"26 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"27 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"28 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"29 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"30 \t11 \t[1.46762684]\t[0.] \t[1.46762684]\t[1.46762684]\n",
"2019-05-03 16:19:58.256354\t遗传算法优化完成耗时54秒\n"
2019-01-30 01:54:51 +00:00
]
},
{
"data": {
"text/plain": [
"[({'atr_length': 38, 'atr_ma_length': 25}, 1.4676268402266743)]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"setting = OptimizationSetting()\n",
2019-05-03 07:17:32 +00:00
"setting.set_target(\"sharpe_ratio\")\n",
"setting.add_parameter(\"atr_length\", 3, 39, 1)\n",
"setting.add_parameter(\"atr_ma_length\", 10, 30, 1)\n",
"\n",
"engine.run_ga_optimization(setting)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"result = _"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}