2020-03-24 15:59:21 +00:00
|
|
|
# flake8: noqa
|
|
|
|
"""
|
2020-04-26 14:04:00 +00:00
|
|
|
下载通达信指数合约1分钟bar => vnpy项目目录/bar_data/tdx/
|
2020-03-24 15:59:21 +00:00
|
|
|
"""
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import json
|
2020-04-26 14:04:00 +00:00
|
|
|
import csv
|
2020-03-24 15:59:21 +00:00
|
|
|
from collections import OrderedDict
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
vnpy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
|
|
|
|
if vnpy_root not in sys.path:
|
|
|
|
sys.path.append(vnpy_root)
|
|
|
|
|
|
|
|
os.environ["VNPY_TESTING"] = "1"
|
|
|
|
|
|
|
|
from vnpy.data.tdx.tdx_future_data import *
|
2020-04-26 14:04:00 +00:00
|
|
|
from vnpy.trader.utility import get_csv_last_dt
|
2020-03-24 15:59:21 +00:00
|
|
|
|
2020-08-07 07:17:41 +00:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
if len(sys.argv) > 1:
|
|
|
|
filter_underlying_symbols = [s.upper() for s in sys.argv[1:]]
|
2020-03-24 15:59:21 +00:00
|
|
|
else:
|
2020-08-07 07:17:41 +00:00
|
|
|
filter_underlying_symbols = []
|
|
|
|
|
|
|
|
# 保存的1分钟指数 bar目录
|
|
|
|
bar_data_folder = os.path.abspath(os.path.join(vnpy_root, 'bar_data'))
|
|
|
|
|
|
|
|
# 开始日期(每年大概需要几分钟)
|
|
|
|
start_date = '20160101'
|
|
|
|
|
|
|
|
# 创建API对象
|
|
|
|
api_01 = TdxFutureData()
|
|
|
|
|
|
|
|
# 更新本地合约缓存信息
|
|
|
|
api_01.update_mi_contracts()
|
|
|
|
|
|
|
|
# 逐一指数合约下载并更新
|
|
|
|
for underlying_symbol in api_01.future_contracts.keys():
|
|
|
|
if len(filter_underlying_symbols) > 0 and underlying_symbol not in filter_underlying_symbols:
|
|
|
|
continue
|
|
|
|
|
|
|
|
index_symbol = underlying_symbol + '99'
|
|
|
|
print(f'开始更新:{index_symbol}')
|
|
|
|
# csv数据文件名
|
|
|
|
bar_file_path = os.path.abspath(os.path.join(bar_data_folder, 'tdx', f'{underlying_symbol}99_{start_date}_1m.csv'))
|
|
|
|
|
|
|
|
# 如果文件存在,
|
|
|
|
if os.path.exists(bar_file_path):
|
|
|
|
|
|
|
|
#df_old = pd.read_csv(bar_file_path, index_col=0)
|
|
|
|
#df_old = df_old.rename(lambda x: pd.to_datetime(x, format="%Y-%m-%d %H:%M:%S"))
|
|
|
|
# 取最后一条时间
|
|
|
|
last_dt = get_csv_last_dt(bar_file_path)
|
|
|
|
start_dt = last_dt - timedelta(days=1)
|
|
|
|
print(f'文件{bar_file_path}存在,最后时间:{start_date}')
|
|
|
|
else:
|
|
|
|
last_dt = None
|
|
|
|
start_dt = datetime.strptime(start_date, '%Y%m%d')
|
|
|
|
print(f'文件{bar_file_path}不存在,开始时间:{start_date}')
|
|
|
|
|
|
|
|
result, bars = api_01.get_bars(symbol=index_symbol,
|
|
|
|
period='1min',
|
|
|
|
callback=None,
|
|
|
|
start_dt=start_dt,
|
|
|
|
return_bar=False)
|
|
|
|
# [dict] => dataframe
|
|
|
|
if not result or len(bars) == 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
if last_dt is None:
|
|
|
|
data_df = pd.DataFrame(bars)
|
|
|
|
data_df.set_index('datetime', inplace=True)
|
|
|
|
data_df = data_df.sort_index()
|
|
|
|
# print(data_df.head())
|
|
|
|
print(data_df.tail())
|
|
|
|
data_df.to_csv(bar_file_path, index=True)
|
|
|
|
print(f'首次更新{index_symbol} 数据 => 文件{bar_file_path}')
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
# 获取标题
|
|
|
|
headers = []
|
|
|
|
with open(bar_file_path, "r", encoding='utf8') as f:
|
|
|
|
reader = csv.reader(f)
|
|
|
|
for header in reader:
|
|
|
|
headers = header
|
|
|
|
break
|
|
|
|
|
|
|
|
bar_count = 0
|
|
|
|
# 写入所有大于最后bar时间的数据
|
|
|
|
with open(bar_file_path, 'a', encoding='utf8', newline='\n') as csvWriteFile:
|
|
|
|
|
|
|
|
writer = csv.DictWriter(f=csvWriteFile, fieldnames=headers, dialect='excel',
|
|
|
|
extrasaction='ignore')
|
|
|
|
for bar in bars:
|
|
|
|
if bar['datetime'] <= last_dt:
|
|
|
|
continue
|
|
|
|
bar_count += 1
|
|
|
|
writer.writerow(bar)
|
|
|
|
|
|
|
|
print(f'更新{index_symbol} 数据 => 文件{bar_file_path}, 最后记录:{bars[-1]}')
|
|
|
|
|
|
|
|
|
|
|
|
print('更新完毕')
|
|
|
|
os._exit(0)
|