vnpy/prod/jobs/refill_tdx_stock_bars.py

200 lines
6.4 KiB
Python
Raw Normal View History

# flake8: noqa
"""
下载通达信股票合约1分钟&日线bar => vnpy项目目录/bar_data/
上海股票 => SSE子目录
深圳股票 => SZSE子目录
2021-08-30 01:04:30 +00:00
修改为多进程模式
"""
import os
import sys
import csv
import json
from collections import OrderedDict
import pandas as pd
2021-08-30 01:04:30 +00:00
from multiprocessing import Pool
from concurrent.futures import ThreadPoolExecutor
from copy import copy
vnpy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
if vnpy_root not in sys.path:
sys.path.append(vnpy_root)
os.environ["VNPY_TESTING"] = "1"
from vnpy.data.tdx.tdx_stock_data import *
from vnpy.data.common import resample_bars_file
from vnpy.trader.utility import load_json
from vnpy.trader.utility import get_csv_last_dt
from vnpy.trader.util_wechat import send_wx_msg
# 保存的1分钟指数 bar目录
bar_data_folder = os.path.abspath(os.path.join(vnpy_root, 'bar_data'))
# 开始日期(每年大概需要几分钟)
start_date = '20160101'
# 创建API对象
api_01 = TdxStockData()
# 额外需要数据下载的基金列表
stock_list = load_json('stock_list.json')
2021-08-30 01:04:30 +00:00
# 强制更新缓存
api_01.cache_config()
symbol_dict = api_01.symbol_dict
2021-08-30 01:04:30 +00:00
#
# thread_executor = ThreadPoolExecutor(max_workers=1)
# thread_tasks = []
def refill(symbol_info):
period = symbol_info['period']
progress = symbol_info['progress']
# print("{}_{}".format(period, symbol_info['code']))
# return
stock_code = symbol_info['code']
# if stock_code in stock_list:
# print(symbol_info['code'])
if symbol_info['exchange'] == 'SZSE':
exchange_name = '深交所'
exchange = Exchange.SZSE
else:
exchange_name = '上交所'
exchange = Exchange.SSE
# num_stocks += 1
stock_name = symbol_info.get('name')
print(f'开始更新:{exchange_name}/{stock_name}, 代码:{stock_code}')
bar_file_folder = os.path.abspath(os.path.join(bar_data_folder, f'{exchange.value}'))
if not os.path.exists(bar_file_folder):
os.makedirs(bar_file_folder)
# csv数据文件名
p_name = period.replace('min', 'm').replace('day', 'd').replace('hour', 'h')
bar_file_path = os.path.abspath(os.path.join(bar_file_folder, f'{stock_code}_{p_name}.csv'))
# 如果文件存在,
if os.path.exists(bar_file_path):
# 取最后一条时间
last_dt = get_csv_last_dt(bar_file_path)
else:
last_dt = None
if last_dt:
start_dt = last_dt - timedelta(days=1)
print(f'文件{bar_file_path}存在,最后时间:{start_dt}')
else:
start_dt = datetime.strptime(start_date, '%Y%m%d')
print(f'文件{bar_file_path}不存在,或读取最后记录错误,开始时间:{start_date}')
d1 = datetime.now()
result, bars = api_01.get_bars(symbol=stock_code,
period=period,
callback=None,
start_dt=start_dt,
return_bar=False)
# [dict] => dataframe
if not result or len(bars) == 0:
return
need_resample = False
# 全新数据
if last_dt is None:
data_df = pd.DataFrame(bars)
data_df.set_index('datetime', inplace=True)
data_df = data_df.sort_index()
# print(data_df.head())
print(data_df.tail())
data_df.to_csv(bar_file_path, index=True)
d2 = datetime.now()
microseconds = (d1 - d1).microseconds
print(f'{progress}% 首次更新{stock_code} {stock_name}数据 {microseconds} 毫秒=> 文件{bar_file_path}')
need_resample = True
# 增量更新
else:
# 获取标题
headers = []
with open(bar_file_path, "r", encoding='utf8') as f:
reader = csv.reader(f)
for header in reader:
headers = header
break
bar_count = 0
# 写入所有大于最后bar时间的数据
# with open(bar_file_path, 'a', encoding='utf8', newline='\n') as csvWriteFile:
with open(bar_file_path, 'a', encoding='utf8') as csvWriteFile:
writer = csv.DictWriter(f=csvWriteFile, fieldnames=headers, dialect='excel',
extrasaction='ignore')
for bar in bars:
if bar['datetime'] <= last_dt:
continue
bar_count += 1
writer.writerow(bar)
if not need_resample:
need_resample = True
d2 = datetime.now()
microseconds = round((d2 - d1).microseconds / 100, 0)
print(f'{progress}%,更新{stock_code} {stock_name} 数据 {microseconds}毫秒 => 文件{bar_file_path}, 最后记录:{bars[-1]}')
# 采用多线程方式输出 5、15、30分钟的数据
# if period == '1min' and need_resample:
# task = thread_executor.submit(resample, stock_code, exchange, [5, 15, 30])
# thread_tasks.append(task)
2021-09-04 05:48:21 +00:00
def resample(vt_symbol, x_mins=[5, 15, 30]):
2021-08-30 01:04:30 +00:00
"""
更新多周期文件
2021-09-04 05:48:21 +00:00
:param vt_symbol: 代码.交易所
2021-08-30 01:04:30 +00:00
:param x_mins:
:return:
"""
d1 = datetime.now()
2021-09-04 05:48:21 +00:00
out_files, err_msg = resample_bars_file(vt_symbol=vt_symbol,
2021-08-30 01:04:30 +00:00
x_mins=x_mins)
d2 = datetime.now()
microseconds = round((d2 - d1).microseconds / 100, 0)
if len(err_msg) > 0:
print(err_msg, file=sys.stderr)
if out_files:
print(f'{microseconds}毫秒,生成 =>{out_files}')
if __name__ == '__main__':
# 下载所有的股票数据
num_progress = 0
total_tasks = len(symbol_dict.keys()) * 2
tasks = []
for period in ['1min', '5min', '15min', '30min', '1hour', '1day']:
for symbol in symbol_dict.keys():
info = copy(symbol_dict[symbol])
stock_code = info['code']
if ('stock_type' in info.keys() and info['stock_type'] in ['stock_cn',
'cb_cn']) or stock_code in stock_list:
info['period'] = period
tasks.append(info)
# if len(tasks) > 12:
# break
total_tasks = len(tasks)
for task in tasks:
num_progress += 1
task['progress'] = round(100 * num_progress / total_tasks, 2)
p = Pool(12)
p.map(refill, tasks)
p.close()
p.join()
#
msg = 'tdx股票数据补充完毕: num_stocks={}'.format(total_tasks)
send_wx_msg(content=msg)
os._exit(0)