vnpy/tests/backtesting/genetic_algorithm.ipynb

190 lines
7.3 KiB
Plaintext
Raw Normal View History

2019-03-26 07:53:15 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"import multiprocessing\n",
"import numpy as np\n",
"from deap import creator, base, tools, algorithms\n",
"from vnpy.app.cta_strategy.backtesting import BacktestingEngine\n",
"from boll_channel_strategy import BollChannelStrategy\n",
"from datetime import datetime\n",
"import multiprocessing #多进程\n",
"from scoop import futures #多进程"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def parameter_generate():\n",
" '''\n",
" 根据设置的起始值,终止值和步进,随机生成待优化的策略参数\n",
" '''\n",
" parameter_list = []\n",
" p1 = random.randrange(4,50,2) #布林带窗口\n",
" p2 = random.randrange(4,50,2) #布林带通道阈值\n",
" p3 = random.randrange(4,50,2) #CCI窗口\n",
" p4 = random.randrange(18,40,2) #ATR窗口 \n",
"\n",
" parameter_list.append(p1)\n",
" parameter_list.append(p2)\n",
" parameter_list.append(p3)\n",
" parameter_list.append(p4)\n",
"\n",
" return parameter_list"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def object_func(strategy_avg):\n",
" \"\"\"\n",
" 本函数为优化目标函数根据随机生成的策略参数运行回测后自动返回2个结果指标收益回撤比和夏普比率\n",
" \"\"\"\n",
" # 创建回测引擎对象\n",
" engine = BacktestingEngine()\n",
" engine.set_parameters(\n",
" vt_symbol=\"IF88.CFFEX\",\n",
" interval=\"1m\",\n",
" start=datetime(2018, 9, 1),\n",
" end=datetime(2019, 1,1),\n",
" rate=0,\n",
" slippage=0,\n",
" size=300,\n",
" pricetick=0.2,\n",
" capital=1_000_000,\n",
" )\n",
"\n",
" setting = {'boll_window': strategy_avg[0], #布林带窗口\n",
" 'boll_dev': strategy_avg[1], #布林带通道阈值\n",
" 'cci_window': strategy_avg[2], #CCI窗口\n",
" 'atr_window': strategy_avg[3],} #ATR窗口 \n",
"\n",
" #加载策略 \n",
" #engine.initStrategy(TurtleTradingStrategy, setting)\n",
" engine.add_strategy(BollChannelStrategy, setting)\n",
" engine.load_data()\n",
" engine.run_backtesting()\n",
" engine.calculate_result()\n",
" result = engine.calculate_statistics(Output=False)\n",
"\n",
" return_drawdown_ratio = round(result['return_drawdown_ratio'],2) #收益回撤比\n",
" sharpe_ratio= round(result['sharpe_ratio'],2) #夏普比率\n",
" return return_drawdown_ratio , sharpe_ratio"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"#设置优化方向:最大化收益回撤比,最大化夏普比率\n",
"creator.create(\"FitnessMulti\", base.Fitness, weights=(1.0, 1.0)) # 1.0 求最大值;-1.0 求最小值\n",
"creator.create(\"Individual\", list, fitness=creator.FitnessMulti)\n",
"\n",
"def optimize():\n",
" \"\"\"\"\"\" \n",
" toolbox = base.Toolbox() #Toolbox是deap库内置的工具箱里面包含遗传算法中所用到的各种函数\n",
"\n",
" # 初始化 \n",
" toolbox.register(\"individual\", tools.initIterate, creator.Individual,parameter_generate) # 注册个体随机生成的策略参数parameter_generate() \n",
" toolbox.register(\"population\", tools.initRepeat, list, toolbox.individual) #注册种群:个体形成种群 \n",
" toolbox.register(\"mate\", tools.cxTwoPoint) #注册交叉:两点交叉 \n",
" toolbox.register(\"mutate\", tools.mutUniformInt,low = 4,up = 40,indpb=0.6) #注册变异:随机生成一定区间内的整数\n",
" toolbox.register(\"evaluate\", object_func) #注册评估优化目标函数object_func() \n",
" toolbox.register(\"select\", tools.selNSGA2) #注册选择:NSGA-II(带精英策略的非支配排序的遗传算法)\n",
" #pool = multiprocessing.Pool()\n",
" #toolbox.register(\"map\", pool.map)\n",
" #toolbox.register(\"map\", futures.map)\n",
"\n",
" #遗传算法参数设置\n",
" MU = 40 #设置每一代选择的个体数\n",
" LAMBDA = 160 #设置每一代产生的子女数\n",
" pop = toolbox.population(400) #设置族群里面的个体数量\n",
" CXPB, MUTPB, NGEN = 0.5, 0.35,40 #分别为种群内部个体的交叉概率、变异概率、产生种群代数\n",
" hof = tools.ParetoFront() #解的集合:帕累托前沿(非占优最优集)\n",
"\n",
" #解的集合的描述统计信息\n",
" #集合内平均值,标准差,最小值,最大值可以体现集合的收敛程度\n",
" #收敛程度低可以增加算法的迭代次数\n",
" stats = tools.Statistics(lambda ind: ind.fitness.values)\n",
" np.set_printoptions(suppress=True) #对numpy默认输出的科学计数法转换\n",
" stats.register(\"mean\", np.mean, axis=0) #统计目标优化函数结果的平均值\n",
" stats.register(\"std\", np.std, axis=0) #统计目标优化函数结果的标准差\n",
" stats.register(\"min\", np.min, axis=0) #统计目标优化函数结果的最小值\n",
" stats.register(\"max\", np.max, axis=0) #统计目标优化函数结果的最大值\n",
"\n",
" #运行算法\n",
" algorithms.eaMuPlusLambda(pop, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN, stats,\n",
" halloffame=hof) #esMuPlusLambda是一种基于(μ+λ)选择策略的多目标优化分段遗传算法\n",
"\n",
" return pop"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"optimize()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}