vnpy/docs/cta_backtester.md

105 lines
5.0 KiB
Markdown
Raw Normal View History

2019-04-18 23:00:23 +00:00
# CTA回测模块
2019-04-23 02:11:42 +00:00
CTA回测模块是基于PyQt5和pyqtgraph的图形化回测工具。启动VN Trader后在菜单栏中点击“功能-> CTA回测”即可进入该图形化回测界面如下图。CTA回测模块主要实现3个功能历史行情数据的下载、策略回测、参数优化。
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/cta_backtester.png)
2019-04-18 23:00:23 +00:00
2019-04-23 02:11:42 +00:00
 
2019-04-18 23:00:23 +00:00
2019-04-28 06:14:23 +00:00
## 1.加载启动
进入图形化回测界面“CTA回测”后会立刻完成初始化工作初始化回测引擎、初始化RQData客户端。
2019-04-18 23:00:23 +00:00
2019-04-28 06:14:23 +00:00
```
def init_engine(self):
""""""
self.write_log("初始化CTA回测引擎")
self.backtesting_engine = BacktestingEngine()
# Redirect log from backtesting engine outside.
self.backtesting_engine.output = self.write_log
self.write_log("策略文件加载完成")
self.init_rqdata()
def init_rqdata(self):
"""
Init RQData client.
"""
result = rqdata_client.init()
if result:
self.write_log("RQData数据接口初始化成功")
```
 
## 2.下载数据
在开始策略回测之前必须保证数据库内有充足的历史数据。故vnpy提供了历史数据一键下载的功能。
下载数据功能主要是基于RQData的get_price()函数实现的。
2019-04-23 02:11:42 +00:00
```
get_price(order_book_ids, start_date='2013-01-04', end_date='2014-01-04', frequency='1d', fields=None, adjust_type='pre', skip_suspended =False, market='cn')
```
2019-04-18 23:00:23 +00:00
2019-04-23 02:11:42 +00:00
在使用前要保证RQData初始化完毕然后填写以下4个字段信息
- 本地代码:格式为合约品种+交易所如IF88.CFFEX、rb88.SHFE然后在底层通过RqdataClient的to_rq_symbol()函数转换成符合RQData格式对应RQData中get_price()函数的order_book_ids字段。
- K线周期可以填1m、60m、1d对应get_price()函数的frequency字段。
- 开始日期格式为yy/mm/dd如2017/4/21对应get_price()函数的start_date字段。点击窗口右侧箭头按钮可改变日期大小
- 结束日期格式为yy/mm/dd如2019/4/22对应get_price()函数的end_date字段。点击窗口右侧箭头按钮可改变日期大小
填写完字段信息后,点击下方“下载数据”按钮启动下载程序,下载成功如图所示。
2019-04-18 23:00:23 +00:00
2019-04-23 02:11:42 +00:00
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/data_loader.png)
2019-04-18 23:00:23 +00:00
2019-04-23 02:11:42 +00:00
 
2019-04-18 23:00:23 +00:00
2019-04-28 06:14:23 +00:00
## 3.策略回测
下载完历史数据后,需要配置以下字段:交易策略、手续费率、交易滑点、合约乘数、价格跳动、回测资金。
这些字段主要对应BacktesterEngine类的run_backtesting函数。
```
def run_backtesting(self, class_name: str, vt_symbol: str, interval: str, start: datetime, end: datetime, rate: float, slippage: float, size: int, pricetick: float, capital: int, setting: dict):
```
2019-04-18 23:00:23 +00:00
2019-04-28 06:14:23 +00:00
点击下方的“开始回测”按钮可以开始回测:
首先会弹出如图所示的参数配置窗口用于调整策略参数。该设置对应的是run_backtesting()函数的setting字典。
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/parameter_setting.png)
2019-04-18 23:00:23 +00:00
2019-04-28 06:14:23 +00:00
点击“确认”按钮后开始运行回测,同时日志界面会输出相关信息,如图。
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/backtesting_log.png)
2019-04-23 02:11:42 +00:00
2019-04-28 06:14:23 +00:00
回测完成后会显示统计数字图表。
2019-04-23 02:11:42 +00:00
2019-04-28 06:14:23 +00:00
 
2019-04-23 02:11:42 +00:00
### 3.1统计数据
2019-04-28 06:14:23 +00:00
用于显示回测完成后的相关统计数值, 如结束资金、总收益率、夏普比率、收益回撤比
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/show_result.png)
2019-04-23 02:11:42 +00:00
2019-04-28 06:14:23 +00:00
 
2019-04-23 02:11:42 +00:00
### 3.2图表分析
2019-04-28 06:14:23 +00:00
以下四个图分别是代表账号净值、净值回撤、每日盈亏、盈亏分布。
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/show_result_chat.png)
2019-04-23 02:11:42 +00:00
2019-04-28 06:14:23 +00:00
 
2019-04-23 02:11:42 +00:00
## 4.参数优化
2019-04-18 23:00:23 +00:00
2019-04-28 06:14:23 +00:00
参数优化功能使用的是穷举算法,即多进程对所有参数组合进行回测,并输出最终解集。其操作流程如下:
- 点击“参数优化”按钮,会弹出“优化参数配置”窗口,用于设置优化目标(如最大化夏普比率、最大化收益回撤比)和设置需要优化的参数以及优化区间,如图
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_setting.png)
- 设置好需要优化的参数后点击“优化参数配置”窗口下方的“确认”按钮开始进行调用CPU多核进行多进程并行优化同时日志会输出相关信息。
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_log.png)
- 点击“优化结果”按钮可以看出优化结果,如图的参数组合是基于目标数值(夏普比率)由高到低的顺序排列的。
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_result.png)
2019-04-18 23:00:23 +00:00