2019-04-18 23:00:23 +00:00
|
|
|
|
# CTA回测模块
|
2019-04-23 02:11:42 +00:00
|
|
|
|
CTA回测模块是基于PyQt5和pyqtgraph的图形化回测工具。启动VN Trader后,在菜单栏中点击“功能-> CTA回测”即可进入该图形化回测界面,如下图。CTA回测模块主要实现3个功能:历史行情数据的下载、策略回测、参数优化。
|
2019-04-28 06:31:49 +00:00
|
|
|
|
|
2019-04-23 02:11:42 +00:00
|
|
|
|
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/cta_backtester.png)
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
2019-04-23 02:11:42 +00:00
|
|
|
|
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
2019-04-29 06:32:53 +00:00
|
|
|
|
## 加载启动
|
2019-04-28 06:14:23 +00:00
|
|
|
|
进入图形化回测界面“CTA回测”后,会立刻完成初始化工作:初始化回测引擎、初始化RQData客户端。
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
```
|
|
|
|
|
def init_engine(self):
|
|
|
|
|
""""""
|
|
|
|
|
self.write_log("初始化CTA回测引擎")
|
|
|
|
|
|
|
|
|
|
self.backtesting_engine = BacktestingEngine()
|
|
|
|
|
# Redirect log from backtesting engine outside.
|
|
|
|
|
self.backtesting_engine.output = self.write_log
|
|
|
|
|
|
|
|
|
|
self.write_log("策略文件加载完成")
|
|
|
|
|
|
|
|
|
|
self.init_rqdata()
|
|
|
|
|
|
|
|
|
|
def init_rqdata(self):
|
|
|
|
|
"""
|
|
|
|
|
Init RQData client.
|
|
|
|
|
"""
|
|
|
|
|
result = rqdata_client.init()
|
|
|
|
|
if result:
|
|
|
|
|
self.write_log("RQData数据接口初始化成功")
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2019-04-29 06:32:53 +00:00
|
|
|
|
## 下载数据
|
2019-04-28 06:14:23 +00:00
|
|
|
|
在开始策略回测之前,必须保证数据库内有充足的历史数据。故vnpy提供了历史数据一键下载的功能。
|
|
|
|
|
下载数据功能主要是基于RQData的get_price()函数实现的。
|
2019-04-23 02:11:42 +00:00
|
|
|
|
```
|
2019-04-28 06:31:49 +00:00
|
|
|
|
get_price(
|
|
|
|
|
order_book_ids, start_date='2013-01-04', end_date='2014-01-04',
|
|
|
|
|
frequency='1d', fields=None, adjust_type='pre', skip_suspended =False,
|
|
|
|
|
market='cn'
|
|
|
|
|
)
|
2019-04-23 02:11:42 +00:00
|
|
|
|
```
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
|
|
|
|
|
2019-04-23 02:11:42 +00:00
|
|
|
|
在使用前要保证RQData初始化完毕,然后填写以下4个字段信息:
|
|
|
|
|
- 本地代码:格式为合约品种+交易所,如IF88.CFFEX、rb88.SHFE;然后在底层通过RqdataClient的to_rq_symbol()函数转换成符合RQData格式,对应RQData中get_price()函数的order_book_ids字段。
|
|
|
|
|
- K线周期:可以填1m、60m、1d,对应get_price()函数的frequency字段。
|
|
|
|
|
- 开始日期:格式为yy/mm/dd,如2017/4/21,对应get_price()函数的start_date字段。(点击窗口右侧箭头按钮可改变日期大小)
|
|
|
|
|
- 结束日期:格式为yy/mm/dd,如2019/4/22,对应get_price()函数的end_date字段。(点击窗口右侧箭头按钮可改变日期大小)
|
|
|
|
|
|
|
|
|
|
填写完字段信息后,点击下方“下载数据”按钮启动下载程序,下载成功如图所示。
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
2019-04-28 06:31:49 +00:00
|
|
|
|
|
2019-04-23 02:11:42 +00:00
|
|
|
|
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/data_loader.png)
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2019-04-23 02:11:42 +00:00
|
|
|
|
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
2019-04-29 06:32:53 +00:00
|
|
|
|
## 策略回测
|
2019-04-28 06:14:23 +00:00
|
|
|
|
下载完历史数据后,需要配置以下字段:交易策略、手续费率、交易滑点、合约乘数、价格跳动、回测资金。
|
|
|
|
|
这些字段主要对应BacktesterEngine类的run_backtesting函数。
|
|
|
|
|
```
|
2019-04-28 06:31:49 +00:00
|
|
|
|
def run_backtesting(
|
|
|
|
|
self, class_name: str, vt_symbol: str, interval: str, start: datetime,
|
|
|
|
|
end: datetime, rate: float, slippage: float, size: int, pricetick: float,
|
|
|
|
|
capital: int, setting: dict
|
|
|
|
|
):
|
2019-04-28 06:14:23 +00:00
|
|
|
|
```
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
点击下方的“开始回测”按钮可以开始回测:
|
|
|
|
|
首先会弹出如图所示的参数配置窗口,用于调整策略参数。该设置对应的是run_backtesting()函数的setting字典。
|
2019-04-28 06:31:49 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/parameter_setting.png)
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
2019-04-28 06:31:49 +00:00
|
|
|
|
|
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
点击“确认”按钮后开始运行回测,同时日志界面会输出相关信息,如图。
|
2019-04-28 06:31:49 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/backtesting_log.png)
|
2019-04-23 02:11:42 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
回测完成后会显示统计数字图表。
|
2019-04-23 02:11:42 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
|
2019-04-23 02:11:42 +00:00
|
|
|
|
|
2019-04-29 06:32:53 +00:00
|
|
|
|
### 统计数据
|
2019-04-28 06:31:49 +00:00
|
|
|
|
用于显示回测完成后的相关统计数值, 如结束资金、总收益率、夏普比率、收益回撤比。
|
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/show_result.png)
|
2019-04-23 02:11:42 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
|
2019-04-23 02:11:42 +00:00
|
|
|
|
|
2019-04-29 06:32:53 +00:00
|
|
|
|
### 图表分析
|
2019-04-28 06:14:23 +00:00
|
|
|
|
以下四个图分别是代表账号净值、净值回撤、每日盈亏、盈亏分布。
|
2019-04-28 06:31:49 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/show_result_chat.png)
|
2019-04-23 02:11:42 +00:00
|
|
|
|
|
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
|
2019-04-23 02:11:42 +00:00
|
|
|
|
|
2019-04-29 06:32:53 +00:00
|
|
|
|
## 参数优化
|
2019-05-08 14:18:56 +00:00
|
|
|
|
vnpy提供2种参数优化的解决方案:穷举算法、遗传算法
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
2019-05-08 14:18:56 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 穷举算法
|
|
|
|
|
|
|
|
|
|
穷举算法原理:
|
|
|
|
|
- 输入需要优化的参数名、优化区间、优化步进,以及优化目标。
|
|
|
|
|
```
|
|
|
|
|
def add_parameter(
|
|
|
|
|
self, name: str, start: float, end: float = None, step: float = None
|
|
|
|
|
):
|
|
|
|
|
""""""
|
|
|
|
|
if not end and not step:
|
|
|
|
|
self.params[name] = [start]
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
if start >= end:
|
|
|
|
|
print("参数优化起始点必须小于终止点")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
if step <= 0:
|
|
|
|
|
print("参数优化步进必须大于0")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
value = start
|
|
|
|
|
value_list = []
|
|
|
|
|
|
|
|
|
|
while value <= end:
|
|
|
|
|
value_list.append(value)
|
|
|
|
|
value += step
|
|
|
|
|
|
|
|
|
|
self.params[name] = value_list
|
|
|
|
|
|
|
|
|
|
def set_target(self, target_name: str):
|
|
|
|
|
""""""
|
|
|
|
|
self.target_name = target_name
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- 形成全局参数组合, 数据结构为[{key: value, key: value}, {key: value, key: value}]。
|
|
|
|
|
```
|
|
|
|
|
def generate_setting(self):
|
|
|
|
|
""""""
|
|
|
|
|
keys = self.params.keys()
|
|
|
|
|
values = self.params.values()
|
|
|
|
|
products = list(product(*values))
|
|
|
|
|
|
|
|
|
|
settings = []
|
|
|
|
|
for p in products:
|
|
|
|
|
setting = dict(zip(keys, p))
|
|
|
|
|
settings.append(setting)
|
|
|
|
|
|
|
|
|
|
return settings
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- 遍历全局中的每一个参数组合:遍历的过程即运行一次策略回测,并且返回优化目标数值;然后根据目标数值排序,输出优化结果。
|
|
|
|
|
```
|
|
|
|
|
def run_optimization(self, optimization_setting: OptimizationSetting, output=True):
|
|
|
|
|
""""""
|
|
|
|
|
# Get optimization setting and target
|
|
|
|
|
settings = optimization_setting.generate_setting()
|
|
|
|
|
target_name = optimization_setting.target_name
|
|
|
|
|
|
|
|
|
|
if not settings:
|
|
|
|
|
self.output("优化参数组合为空,请检查")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
if not target_name:
|
|
|
|
|
self.output("优化目标未设置,请检查")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Use multiprocessing pool for running backtesting with different setting
|
|
|
|
|
pool = multiprocessing.Pool(multiprocessing.cpu_count())
|
|
|
|
|
|
|
|
|
|
results = []
|
|
|
|
|
for setting in settings:
|
|
|
|
|
result = (pool.apply_async(optimize, (
|
|
|
|
|
target_name,
|
|
|
|
|
self.strategy_class,
|
|
|
|
|
setting,
|
|
|
|
|
self.vt_symbol,
|
|
|
|
|
self.interval,
|
|
|
|
|
self.start,
|
|
|
|
|
self.rate,
|
|
|
|
|
self.slippage,
|
|
|
|
|
self.size,
|
|
|
|
|
self.pricetick,
|
|
|
|
|
self.capital,
|
|
|
|
|
self.end,
|
|
|
|
|
self.mode
|
|
|
|
|
)))
|
|
|
|
|
results.append(result)
|
|
|
|
|
|
|
|
|
|
pool.close()
|
|
|
|
|
pool.join()
|
|
|
|
|
|
|
|
|
|
# Sort results and output
|
|
|
|
|
result_values = [result.get() for result in results]
|
|
|
|
|
result_values.sort(reverse=True, key=lambda result: result[1])
|
|
|
|
|
|
|
|
|
|
if output:
|
|
|
|
|
for value in result_values:
|
|
|
|
|
msg = f"参数:{value[0]}, 目标:{value[1]}"
|
|
|
|
|
self.output(msg)
|
|
|
|
|
|
|
|
|
|
return result_values
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
注意:可以使用multiprocessing库来创建多进程实现并行优化。例如:若用户计算机是2核,优化时间为原来1/2;若计算机是10核,优化时间为原来1/10。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
穷举算法操作:
|
2019-04-28 06:14:23 +00:00
|
|
|
|
|
2019-04-28 06:31:49 +00:00
|
|
|
|
- 点击“参数优化”按钮,会弹出“优化参数配置”窗口,用于设置优化目标(如最大化夏普比率、最大化收益回撤比)和设置需要优化的参数以及优化区间,如图。
|
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_setting.png)
|
|
|
|
|
|
|
|
|
|
- 设置好需要优化的参数后,点击“优化参数配置”窗口下方的“确认”按钮开始进行调用CPU多核进行多进程并行优化,同时日志会输出相关信息。
|
2019-04-28 06:31:49 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_log.png)
|
|
|
|
|
|
|
|
|
|
- 点击“优化结果”按钮可以看出优化结果,如图的参数组合是基于目标数值(夏普比率)由高到低的顺序排列的。
|
2019-04-28 06:31:49 +00:00
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
![](https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_result.png)
|
|
|
|
|
|
|
|
|
|
|
2019-05-08 14:18:56 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 遗传算法
|
|
|
|
|
|
|
|
|
|
遗传算法原理:
|
|
|
|
|
|
|
|
|
|
- 输入需要优化的参数名、优化区间、优化步进,以及优化目标;
|
|
|
|
|
|
|
|
|
|
- 形成全局参数组合,该组合的数据结构是列表内镶嵌元组,即[[(key, value), (key, value)] , [(key, value), (key,value)]],与穷举算法的全局参数组合的数据结构不同。这样做的目的是有利于参数间进行交叉互换和变异。
|
|
|
|
|
```
|
|
|
|
|
def generate_setting_ga(self):
|
|
|
|
|
""""""
|
|
|
|
|
settings_ga = []
|
|
|
|
|
settings = self.generate_setting()
|
|
|
|
|
for d in settings:
|
|
|
|
|
param = [tuple(i) for i in d.items()]
|
|
|
|
|
settings_ga.append(param)
|
|
|
|
|
return settings_ga
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- 形成个体:调用random()函数随机从全局参数组合中获取参数。
|
|
|
|
|
```
|
|
|
|
|
def generate_parameter():
|
|
|
|
|
""""""
|
|
|
|
|
return random.choice(settings)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- 定义个体变异规则: 即发生变异时,旧的个体完全被新的个体替代。
|
|
|
|
|
```
|
|
|
|
|
def mutate_individual(individual, indpb):
|
|
|
|
|
""""""
|
|
|
|
|
size = len(individual)
|
|
|
|
|
paramlist = generate_parameter()
|
|
|
|
|
for i in range(size):
|
|
|
|
|
if random.random() < indpb:
|
|
|
|
|
individual[i] = paramlist[i]
|
|
|
|
|
return individual,
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- 定义评估函数:入参的是个体,即[(key, value), (key, value)]形式的参数组合,然后通过dict()转化成setting字典,然后运行回测,输出目标优化数值,如夏普比率、收益回撤比。(注意,修饰器@lru_cache作用是缓存计算结果,避免遇到相同的输入重复计算,大大降低运行遗传算法的时间)
|
|
|
|
|
```
|
|
|
|
|
@lru_cache(maxsize=1000000)
|
|
|
|
|
def _ga_optimize(parameter_values: tuple):
|
|
|
|
|
""""""
|
|
|
|
|
setting = dict(parameter_values)
|
|
|
|
|
|
|
|
|
|
result = optimize(
|
|
|
|
|
ga_target_name,
|
|
|
|
|
ga_strategy_class,
|
|
|
|
|
setting,
|
|
|
|
|
ga_vt_symbol,
|
|
|
|
|
ga_interval,
|
|
|
|
|
ga_start,
|
|
|
|
|
ga_rate,
|
|
|
|
|
ga_slippage,
|
|
|
|
|
ga_size,
|
|
|
|
|
ga_pricetick,
|
|
|
|
|
ga_capital,
|
|
|
|
|
ga_end,
|
|
|
|
|
ga_mode
|
|
|
|
|
)
|
|
|
|
|
return (result[1],)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ga_optimize(parameter_values: list):
|
|
|
|
|
""""""
|
|
|
|
|
return _ga_optimize(tuple(parameter_values))
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- 运行遗传算法:调用deap库的算法引擎来运行遗传算法,其具体流程如下。
|
|
|
|
|
1)先定义优化方向,如夏普比率最大化;
|
|
|
|
|
2)然后随机从全局参数组合获取个体,并形成族群;
|
|
|
|
|
3)对族群内所有个体进行评估(即运行回测),并且剔除表现不好个体;
|
|
|
|
|
4)剩下的个体会进行交叉或者变异,通过评估和筛选后形成新的族群;(到此为止是完整的一次种群迭代过程);
|
|
|
|
|
5)多次迭代后,种群内差异性减少,整体适应性提高,最终输出建议结果。该结果为帕累托解集,可以是1个或者多个参数组合。
|
|
|
|
|
|
|
|
|
|
注意:由于用到了@lru_cache, 迭代中后期的速度回提高非常多,因为很多重复的输入都避免了再次的回测,直接在内存中查询并且返回计算结果。
|
|
|
|
|
```
|
|
|
|
|
from deap import creator, base, tools, algorithms
|
|
|
|
|
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
|
|
|
|
|
creator.create("Individual", list, fitness=creator.FitnessMax)
|
|
|
|
|
......
|
|
|
|
|
# Set up genetic algorithem
|
|
|
|
|
toolbox = base.Toolbox()
|
|
|
|
|
toolbox.register("individual", tools.initIterate, creator.Individual, generate_parameter)
|
|
|
|
|
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
|
|
|
|
toolbox.register("mate", tools.cxTwoPoint)
|
|
|
|
|
toolbox.register("mutate", mutate_individual, indpb=1)
|
|
|
|
|
toolbox.register("evaluate", ga_optimize)
|
|
|
|
|
toolbox.register("select", tools.selNSGA2)
|
|
|
|
|
|
|
|
|
|
total_size = len(settings)
|
|
|
|
|
pop_size = population_size # number of individuals in each generation
|
|
|
|
|
lambda_ = pop_size # number of children to produce at each generation
|
|
|
|
|
mu = int(pop_size * 0.8) # number of individuals to select for the next generation
|
|
|
|
|
|
|
|
|
|
cxpb = 0.95 # probability that an offspring is produced by crossover
|
|
|
|
|
mutpb = 1 - cxpb # probability that an offspring is produced by mutation
|
|
|
|
|
ngen = ngen_size # number of generation
|
|
|
|
|
|
|
|
|
|
pop = toolbox.population(pop_size)
|
|
|
|
|
hof = tools.ParetoFront() # end result of pareto front
|
|
|
|
|
|
|
|
|
|
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
|
|
|
|
np.set_printoptions(suppress=True)
|
|
|
|
|
stats.register("mean", np.mean, axis=0)
|
|
|
|
|
stats.register("std", np.std, axis=0)
|
|
|
|
|
stats.register("min", np.min, axis=0)
|
|
|
|
|
stats.register("max", np.max, axis=0)
|
|
|
|
|
|
|
|
|
|
algorithms.eaMuPlusLambda(
|
|
|
|
|
pop,
|
|
|
|
|
toolbox,
|
|
|
|
|
mu,
|
|
|
|
|
lambda_,
|
|
|
|
|
cxpb,
|
|
|
|
|
mutpb,
|
|
|
|
|
ngen,
|
|
|
|
|
stats,
|
|
|
|
|
halloffame=hof
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Return result list
|
|
|
|
|
results = []
|
|
|
|
|
|
|
|
|
|
for parameter_values in hof:
|
|
|
|
|
setting = dict(parameter_values)
|
|
|
|
|
target_value = ga_optimize(parameter_values)[0]
|
|
|
|
|
results.append((setting, target_value, {}))
|
|
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2019-04-28 06:14:23 +00:00
|
|
|
|
|
2019-04-18 23:00:23 +00:00
|
|
|
|
|
|
|
|
|
|