vnpy/prod/jobs/refill_tdx_future_bars.py

111 lines
3.6 KiB
Python
Raw Permalink Normal View History

# flake8: noqa
"""
下载通达信指数合约1分钟bar => vnpy项目目录/bar_data/tdx/
"""
import os
import sys
import json
import csv
from collections import OrderedDict
import pandas as pd
vnpy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
if vnpy_root not in sys.path:
sys.path.append(vnpy_root)
os.environ["VNPY_TESTING"] = "1"
from vnpy.data.tdx.tdx_future_data import *
from vnpy.trader.utility import get_csv_last_dt
if __name__ == "__main__":
if len(sys.argv) > 1:
filter_underlying_symbols = [s.upper() for s in sys.argv[1:]]
else:
filter_underlying_symbols = []
# 保存的1分钟指数 bar目录
bar_data_folder = os.path.abspath(os.path.join(vnpy_root, 'bar_data'))
# 开始日期(每年大概需要几分钟)
start_date = '20160101'
# 创建API对象
api_01 = TdxFutureData()
# 更新本地合约缓存信息
api_01.update_mi_contracts()
# 逐一指数合约下载并更新
for underlying_symbol in api_01.future_contracts.keys():
if len(filter_underlying_symbols) > 0 and underlying_symbol not in filter_underlying_symbols:
continue
index_symbol = underlying_symbol + '99'
print(f'开始更新:{index_symbol}')
# csv数据文件名
bar_file_path = os.path.abspath(os.path.join(bar_data_folder, 'tdx', f'{underlying_symbol}99_{start_date}_1m.csv'))
# 如果文件存在,
if os.path.exists(bar_file_path):
#df_old = pd.read_csv(bar_file_path, index_col=0)
#df_old = df_old.rename(lambda x: pd.to_datetime(x, format="%Y-%m-%d %H:%M:%S"))
# 取最后一条时间
last_dt = get_csv_last_dt(bar_file_path)
start_dt = last_dt - timedelta(days=1)
print(f'文件{bar_file_path}存在,最后时间:{start_date}')
else:
last_dt = None
start_dt = datetime.strptime(start_date, '%Y%m%d')
print(f'文件{bar_file_path}不存在,开始时间:{start_date}')
result, bars = api_01.get_bars(symbol=index_symbol,
period='1min',
callback=None,
start_dt=start_dt,
return_bar=False)
# [dict] => dataframe
if not result or len(bars) == 0:
continue
if last_dt is None:
data_df = pd.DataFrame(bars)
data_df.set_index('datetime', inplace=True)
data_df = data_df.sort_index()
# print(data_df.head())
print(data_df.tail())
data_df.to_csv(bar_file_path, index=True)
print(f'首次更新{index_symbol} 数据 => 文件{bar_file_path}')
continue
# 获取标题
headers = []
with open(bar_file_path, "r", encoding='utf8') as f:
reader = csv.reader(f)
for header in reader:
headers = header
break
bar_count = 0
# 写入所有大于最后bar时间的数据
with open(bar_file_path, 'a', encoding='utf8', newline='\n') as csvWriteFile:
writer = csv.DictWriter(f=csvWriteFile, fieldnames=headers, dialect='excel',
extrasaction='ignore')
for bar in bars:
if bar['datetime'] <= last_dt:
continue
bar_count += 1
writer.writerow(bar)
print(f'更新{index_symbol} 数据 => 文件{bar_file_path}, 最后记录:{bars[-1]}')
print('更新完毕')
os._exit(0)